Assistant Professor,
Department of Chemistry
2. Bag, S.; Thangadurai, V.
Electrolyte Development for Solid State Lithium Batteries.
2020, In: Skinner, S (Ed.), Energy Storage and Conversion Materials, Royal Society of Chemistry, pp. 100-135.
1. Raj, A.; Bag, S.; Roy, A.; Pal, U.; Mitra, S.
Battery Technologies for Energy Storage.
2017, In: Abraham, M.A. (Ed.), Encyclopaedia of Sustainable Technologies, Elsevier, pp. 469–486.
23. Tarancón, A.; Esposito, V.; Bag, S.; Grant, P. et al
2022 Roadmap on 3D Printing for Energy.
J. Phys. Energy 2022, 4, 011501/1-37.
22. Bag, S.; Murarka, H.; Zhou, C.; Bhattacharya, A.; Jokhakar, D.; Pol, V. G.; Thangadurai, V.
Understanding the Na-Ion Storage Mechanism in Na3+xV2-xMx(PO4)3 [M=Ni2+, Co2+, Mg2+ and x=0.1-0.5] Cathode.
ACS Appl. Energy Mater. 2020, 3, 8475–8486.
21. Bag, S.; Zhou, C.; Kim, P.; Pol, V. G.; Thangadurai, V.
LiF Modified Stable Flexible PVDF-Garnet Hybrid Electrolyte for High Performance All-Solid-State Li-S Batteries.
Energy Storage Mater. 2020, 24, 197-207.
20. Bag, S.; Zhou, C.; Reid, S.; Butler, S.; Thangadurai, V.
Electrochemical Studies on Symmetric Solid-State Na-ion Full Cell using NASICON-type Electrodes and Polymer Composite Electrolyte.
J. Power Sources 2020, 454, 227954/1-10.
19. Zhou, C.; Bag, S.; He, T.; Lv, B.; Thangadurai, V.
Understanding the Role of Solvents on the Morphological Structure and Li-ion Conductivity of Poly(vinylidene fluoride)-based Polymer Electrolytes.
J. Electrochem. Soc. 2020 167, 070552/1-10.
18. Zhou, C.; Bag, S.; He, T.; Lv, B.; Thangadurai, V.
A 20 oC Operating High Capacity Solid-State Li-S Battery with an Engineered Carbon Support Cathode Structure.
Appl. Mater. Today 2020, 19, 100585/1-10.
17. Samson, A. J.; Hofstetter, K.; Bag, S.; Thangadurai, V.
A Bird’s-Eye View of Li-Stuffed Garnet-type Li7La3Zr2O12 Ceramic Electrolytes for Advanced All-solid-state Li Batteries.
Energy Environ. Sci. 2019, 12, 2957-2975.
16. Bag, S.; Roy, A.; Mitra, S.
Sulfur, Nitrogen Dual Doped Reduced Graphene Oxide Supported Two‐Dimensional Sb2S3 Nanostructures for the Anode Material of Sodium‐ion Battery.
ChemistrySelect 2019, 4, 6679-6686.
15. Champagne, P-L.; Ester, D.; Bhattacharya, A.; Hofstetter, K.; Zellman, C.; Bag, S.; Yu, H.; Trudel, S.; Michaelis, V. M.; Williams, V. E.; Thangadurai, V.; Ling, C.-C.
Liquid Crystalline Lithium-ion Electrolytes Derived from Biodegradable Cyclodextrin.
J. Mater. Chem. A, 2019, 7, 12201-12213.
Engineering Materials for Progressive All-Solid-State Na Batteries.
ACS Energy Lett. 2018, 39, 2181-2198.
13. Bag, S.; Samanta, A.; Bhunia, P.; Raj, C. R.
Rational Functionalization of Reduced Graphene Oxide with Imidazolium-based Ionic Liquid for Supercapacitor Applications.
Int. J. Hydrogen Energy 2016, 41, 22134-22143.
12. Bag, S.; Raj, C. R.
Facile Shape-Controlled Growth of Hierarchical Mesoporous δ-MnO2 for the Development of Asymmetric Supercapacitor.
J. Mater. Chem. A 2016, 4, 8384-8394.
11. Bag, S.; Raj, C. R.
On the Electrocatalytic Activity of Nitrogen-doped Reduced Graphene Oxide: Does the Nature of Nitrogen Really Control the Activity Towards Oxygen Reduction?
J Chem. Sci. 2016, 128, 339-347.
Hierarchical Three-Dimensional Mesoporous MnO2 Nanostructure for High Performance Aqueous Asymmetric Supercapacitor.
J. Mater. Chem. A, 2016, 4, 587-595.
Nitrogen and Sulfur Dual-Doped Reduced Graphene Oxide: Synergistic Effect of Dopants Towards Oxygen Reduction Reaction.
Electrochim. Acta, 2015, 163, 16-23.
Layered Inorganic–Organic Hybrid Material Based on Reduced Graphene Oxide and α-Ni(OH)2 for High Performance Supercapacitor Electrodes.
J. Mater. Chem. A, 2014, 42, 17848-17856.
Facile Single-Step Synthesis of Nitrogen-Doped Reduced Graphene Oxide-Mn3O4 Hybrid Functional Material for the Electrocatalytic Reduction of Oxygen.
ACS Appl. Mater. Interfaces, 2014, 6, 2692-2699.
6. Chandra, S.; Das, P.; Bag, S.; Bhar, R.; Pramanik, P.
Mn2O3 Decorated Graphene Nanosheet: An Advanced Material for the Photocatalytic Degradation of Organic Dyes.
Mater. Sci. Eng. B, 2012, 177, 855-861.
5. Chandra, S.; Bag, S.; Das, P.; Bhattacharya, D.; Pramanik, P.
Fabrication of Magnetically Separable Palladium–Graphene Nanocomposite with Unique Catalytic Property of Hydrogenation.
Chem. Phys. Lett., 2012, 519, 59-63.
4. Chandra, S.; Bag, S.; Bhar, R.; Pramanik, P.
Sonochemical Synthesis and Application of Rhodium–Graphene Nanocomposite.
J. Nanopart. Res., 2011, 13, 2769-2777.
3. Chandra, S.; Bag, S.; Bhar, R.; Pramanik, P.
Effect of Transition and Non-transition Metals During the Synthesis of Carbon Xerogels.
Microporous and Mesoporous Mater., 2011, 138, 149-156.
2. Chandra, S.; Das, P.; Bag, S.; Laha, D.; Pramanik, P.
Synthesis, Functionalization and Bioimaging Applications of Highly Fluorescent Carbon Nanoparticles.
1. Chandra, S.; Mitra, S.; Laha, D.; Bag, S.; Das, P.; Goswami, A.; Pramanik, P.
Fabrication of Multi-structure Nanocarbons from Carbon Xerogel: A Unique Scaffold towards Bio-imaging.
Chem. Commun., 2011, 47, 8587-8589.
This website uses cookies or similar technologies, to enhance your browsing experience.