Associate Professor
(24) Ishita, I.; Radhakanth, S.; Sow, P. K.; Singhal, R. Role of Pore Architecture on the Confinement of Electrogenerated Iodine in Iodide-Based Energy Storage Systems. The Journal of Physical Chemistry C. 2024, 5825-5836. https://doi.org/10.1021/acs.jpcc.4c00610
(23) Ishita, I.; Sahoo, P.; Sow, P.K.; Singhal, R. Unlocking the Potential of KI as Redox Additive in Supercapacitor through Synergistic Enhancement with H2SO4 as a Co-electrolyte. Electrochimica Acta. 2023, 451,142286. https://doi.org/10.1016/j.electacta.2023.142286
(22) Mohan, A.; Singhal, R.; Ramanan, S.R. A study on the effect of the collector properties on the fabrication of magnetic polystyrene nanocomposite fibers using the electrospinning technique. Journal of Applied Polymer Science. 2023, 140(6), e53461. https://doi.org/10.1002/app.53461
(21) Radhakanth, S.; Singhal, R. In–situ synthesis of MnO dispersed carbon nanofibers as binder-free electrodes for high-performance supercapacitors. Chemical Engineering Science. 2023, 265, 118224. https://doi.org/10.1016/j.ces.2022.118224
(20) Sahoo, P.; Singhal, R.; Sow, P.K. Dynamic Electrolyte Spreading during Meniscus-Confined Electrodeposition and Electrodissolution of Copper for Surface Patterning. ACS Applied Materials & Interfaces. 2022, 14, 37, 42586-42601. https://doi.org/10.1021/acsami.2c04798
(19) Sow, P. K.; Singhal, R.; Sahoo, P.; Radhakanth, S. Fabricating low-cost, robust superhydrophobic coatings with re-entrant topology for self-cleaning, corrosion inhibition, and oil-water separation. Journal of Colloid and Interface Science. 2021, 600, 358-372. https://doi.org/10.1016/j.jcis.2021.05.026
(18) Gupta, A.; Ayithapu, P.; Singhal, R. Study of the electric field distribution of various electrospinning geometries and its effect on the resultant nanofibers using finite element simulation. Chemical Engineering Science. 2021, 235, 116463. https://doi.org/10.1016/j.ces.2021.116463
(17) Ishita; Singhal, R. Porous Multi-Channel Carbon Nanofiber Electrodes using Discarded Polystyrene Foam as Sacrificial Material for High-Performance Supercapacitors. Journal of Applied Electrochemistry. 2020, 50, 809-820. https://doi.org/10.1007/s10800-020-01433-0.
(16) Sow, P. K.; Ishita; Singhal, R. Sustainable approach to recycle waste polystyrene to high-value submicron fibers using solution blow spinning and application towards oil-water separation. Journal of Environmental Chemical Engineering, 2020, 8(2), 102786. https://doi.org/10.1016/j.jece.2018.11.031
(15) Singhal, R.; Ishita; Sow, P. K. Integrated Polymer Dissolution and Solution Blow Spinning Coupled with Solvent Recovery for Expanded Polystyrene Recycling. Journal of Polymers and the Environment, 2019, 27(6), 1240-1251. https://doi.org/10.1007/s10924-019-01427-w
(14) Li, F.-F.; Singhal, R.; Ren, J.; Johnson, M.; Lefler, M.; Licht, S. Solar Electrochemical Thermal Process (STEP) Ammonia: Optimization of the Electrolysis Conditions. ChemRxiv. Preprint, 2018. https://doi.org/10.26434/chemrxiv.6667496.v1
(13) Ren, J.; Johnson, M.; Singhal, R.; Licht, S. Transformation of the greenhouse gas CO2 by molten electrolysis into a wide controlled selection of carbon nanotubes. Journal of CO2 Utilization, 2017, 18, 335. https://doi.org/10.1016/j.jcou.2017.02.005
(12) Singhal, R.; Kalra, V. Cobalt nanoparticle-embedded porous carbon nanofibers with inherent N- and F-doping as binder-free bifunctional catalysts for oxygen reduction and evolution reactions. ChemPhysChem, 2016, 18 (2), 223. https://doi.org/10.1002/cphc.201600771
(11) Singhal, R.; Kalra, V. Binder-free hierarchical cobalt embedded porous carbon nanofibers as an efficient cathode for lithium-air batteries. RSC Advances, 2016, 6(105), 103072. https://doi.org/10.1039/C6RA16874D
(10) Chung, S-H.; Han, P.; Singhal, R.; Kalra, V.; Manthiram, A. Electrochemically Stable Rechargeable Lithium–Sulfur Batteries with a Microporous Carbon Nanofiber Filter for Polysulfide. Advanced Energy Materials, 2015, 5 (18): https://doi.org/10.1002/aenm.201500738
(9) Singhal, R.#; Chung, S-H.#; Manthiram, A.; Kalra, V. A Free-standing Carbon Nanofiber Interlayer for High-Performance Lithium-Sulfur Batteries. Journal of Materials Chemistry A, 2015, 3, 4530. https://doi.org/10.1039/C4TA06511E
(8) Chung, S.-H.#; Singhal, R.#; Kalra, V.; Manthiram, A. A Porous Carbon Mat as an Electrochemical Testing Platform for Investigating the Polysulfide Retention of Various Cathode Configurations in Li-S Cells. The Journal of Physical Chemistry Letters, 2015, 6, 2163. https://doi.org/10.1021/acs.jpclett.5b00927
(7) Singhal, R.; Kalra, V. Using Common Salt to Impart Pseudocapacitive Functionalities to Carbon Nanofibers. Journal of Materials Chemistry A, 2015, 3, 377. https://doi.org/10.1039/C4TA05121A
(6) Tran, C.; Singhal, R.; Lawrence, D.; Kalra, V. Polyaniline-coated Freestanding Porous Carbon Nanofibers as Efficient Hybrid Electrodes for Supercapacitors. Journal of Power Sources, 2015, 293, 373. https://doi.org/10.1016/j.jpowsour.2015.05.054
(5) Dillard, C.; Singhal, R.; Kalra, V. Hierarchical Self-Assembly in Monoaxially Electrospun P3HT/PCBM Nanofibers. Macromolecular Materials & Engineering, 2015, 300 (3), 320-327. https://doi.org/10.1002/mame.201400214
(4) Kaul, S.; Singhal, R.; Behera, B.; Bangwal, D. Reactive extraction of non-edible oil seeds for biodiesel production. Journal of Scientific and Industrial Research, 2014, 73(4), 235. http://nopr.niscair.res.in/handle/123456789/27729
(3) Singhal, R.; Seth, P.; Bangwal, D.; Kaul, S. Optimization of biodiesel production by response surface methodology and genetic algorithm. Journal of ASTM International, 2012, 9(5). https://doi.org/10.1520/JAI104328
(2) Singhal, R.; Singhal, C.; Upadhyayula, S. Thermal-Catalytic Degradation of Polyethylene over Silicoaluminophosphate Molecular Sieves – A Thermogravimetric Study. Journal of Analytical and Applied Pyrolysis, 2010, 89(2), 313. https://doi.org/10.1016/j.jaap.2010.09.007
(1) Hakeem, M.A.; Ali, M.M.; Singhal, R.; Ali, S.S. Modeling of Non-Isothermal Batch Reactor using Fuzzy Logic. Indian Chemical Engineer, 2009, 51(4), 261. https://doi.org/10.1080/00194500903444334