Professor
In Semester 1, 2024-25, I am teaching the following two courses: (i) Quantum Mechanics for Engineers(PHYF345)-an undergraduate course and (ii) Quantum Theory & Applications(PHYG514)- a PhD level course.
The set of courses that I taught in BITS: I have taught the following courses: (i)Mechanics, Oscillations & Waves, (ii) Electrodynamics, (iii) Classical Mechanics,
(iv)Quantum Mechanics I & II, (v) Modern Physics, (vi)Statistical Mechanics, (vii)Mathematics III (Differential Equations and it's application),
(vii) Nuclear & Particle Physics, (viii) Theory of Relativity, (ix)Particle Physics, (x) Introduction to Astronomy & Astrophysics,
(xi)General Theory of Relativity & Cosmology, (xii) Physics Laboratory I, (Xiii) Advanced Physics Lab.
Text Books:
TB1: Introduction to Quantum Mechanics, D. J. Griffith, 2nd Edition, Pearson Education.
This course aims to introduce the basic concepts of General Theory of Relativity and it's application in Cosmology i.e. to know the behavior of the universe at large scale. After reviewing basic concepts of special relativity (in 4 vector formalism), the notion of tensor, covariant derivative, geodesics, curvature tensor, Ricci tensor, Ricci scalar, Einstein tensor and hence the Einstein equations will be derived. The Schwarzschild black hole solution of the Einstein equation will be discussed, which will be followed by Physics near the massive objects. The FRW cosmology will be discussed at a length and finally inflationary cosmology will be introduced in brief.
Text Books:
TB1: A short course in General Theory of Relativity, Foster and Nightingale (Springer).
This website uses cookies or similar technologies, to enhance your browsing experience.