Feedback

Prof. Gujji Murali Mohan Reddy

Assistant Professor,
Department of Mathematics

Adaptive Finite Element Methods, Evolution Problems with Memory, Inverse problems, Method of Fundamental Solutions, PDEs with randomness, Parabolic interface Problems, Perspective 3-point Problem, Plant Biotechnology
Birla Institute of Technology & Science, Pilani
Hyderabad Campus
Jawahar Nagar, Kapra Mandal
Dist.-Medchal-500 078
Telangana, India

Publications

Journal Publications (by area):
 
1. Adaptive Finite Element Methods
 
9, N. Shravani, G. M. M. Reddy and Amiya K. Pani, Anisotropic a posteriori error analysis for the two-step backward differentiation formula for parabolic integro-differential equation, J. Sci. Comput., 93, 26(2022), Springer.  doi: https://doi.org/10.1007/s10915-022-01996-4, Springer.  
 
8*G. M. M. Reddy, Fully discrete a posteriori error estimates for parabolic integro-differential equations using two-step backward differentiation formulaBIT Numer. Math., pp. 1-27, doi: 10.1007/s10543-021-00866-z, (2021), Springer.  
 
7*. G. M. M. Reddy, R. K. Sinha and J.A. Cuminato, A posteriori error analysis of Crank-Nicolson finite element method for parabolic integro-differential equations,  Journal of Scientific Computing, pp. 414–441, 79(2019), Springer. 
 
6. J. S. Gupta, R. K. Sinha, G. M. M. Reddy and J. Jain, A posteriori error analysis of the Crank-Nicolson finite element method for linear parabolic interface problems: A reconstruction approach, Journal of Computational and Applied Mathematics, pp.173–190, 340(2018), Elsevier.    
 
5. J. S. Gupta, R. K. Sinha, G. M. M. Reddy and J. Jain, New Clement type interpolation inequalities and a posteriori error estimates for linear parabolic interface problems, Numer. Methods Partial Differential Equations, pp. 570–598, 33(2017), Wiley.  
 
4*. J. S. Gupta, R. K. Sinha, G. M. M. Reddy and J. Jain, A posteriori error analysis of two-step backward differentiation formula finite element approximation for parabolic interface problems, Journal of Scientific Computing, pp. 406–429, 69(2016), Springer. 
  
3*. G. M. M. Reddy and R. K. Sinha, On the Crank-Nicolson anisotropic a posteriori error analysis for  Math. Comp., pp. 2365–2390, 85(2016), American Mathematical Society.  
 
2. G. M. M. Reddy and R. K. Sinha, The backward Euler anisotropic a posteriori error analysis for parabolic integro-differential equations, Numer. Methods Partial Differential Equations, pp. 1309–1330, 32(2016), Wiley.
 
1*. G. M. M. Reddy and R. K. Sinha, Ritz-Volterra reconstructions and a posteriori error analysis of finite element method for parabolic integro-differential equations, IMA J. Numer. Anal., pp. 341–371, 35(2015), Oxford Journals. 
 
 
2. Inverse Problems
 
6. P. Nanda, G. M. M. Reddy, and M. Vynnycky, An inverse two-phase nonlinear Stefan problem: a phase-wise split approach, Comput. Math. with Appl., accepted for publication.  
 
5*. P. Nanda, and G. M. M. Reddy, Efficient numerical solution of one-phase inverse Stefan problem in two-dimensions: a posteriori error control, Stud. Appl. Math., pp. 1563–1585, 148(2022). 
  
4*. G. M. M. Reddy, P. Nanda, M. Vynnycky and J.A. Cuminato, Efficient numerical solution of boundary identification problems: MFS with adaptive stochastic optimization, Applied Mathematics and Computation, 409, 12640 (2021), Elsevier.
 
3. G. M. M. Reddy, P. Nanda, M. Vynnycky and J.A. Cuminato, An adaptive boundary algorithm for the reconstruction of boundary and initial data using the method of fundamental solutions for the inverse Cauchy-Stefan problem, Computational and Applied Mathematics, pp. 1–26, 40(2021), Springer.
 
2. G. M. M. Reddy, M. Vynnycky and J.A. Cuminato, An efficient adaptive boundary algorithm to reconstruct Neumann boundary data in the MFS for the inverse Stefan problem, Journal of Computational and Applied Mathematics, pp.21–40, 349(2019), Elsevier.  
  
1. G. M. M. Reddy, M. Vynnycky and J.A. Cuminato, On efficient reconstruction of boundary data with optimal placement of the source points in the MFS: application to inverse Stefan problems, Inverse Problems in Science and Engineering, pp. 1249–1279, 26(2018), Taylor & Francis.
 
 
3. Others
 
2. G. M. M. Reddy, A. B. Seitenfuss, D. O. Medeiros, L. Meacci, M. Assunção and M. Vynnycky, A Compact FEM Implementation for Parabolic Integro-Differential Equations in 2D, Algorithms, pp. 1-24, 13(2020). (documentation for the software is available in the Software section). 
 
1. M. Vynnycky and G. M. M. Reddy, On the effect of control-point spacing on the multisolution phenomenon in the P3P problem, Mathematical Problems in Engineering, pp. 13, 2018(2018), Hindawi.
 

Submitted for Publication:

 
1. MFS-based hybrid numerical strategy for a posteriori error control for a two-dimensional two-phase nonlinear inverse Stefan problem (with P. Nanda and M. Vynnycky)