Feedback

Dr. Ajaya Kumar Pani

Assistant Professor, Department of Chemical Engineering

Department of Chemical Engineering, Birla Institute of Technology & Science, Pilani- 333031, Rajasthan. India.

Khurshid, A., & Pani, A. K. (2024). An integrated approach combining randomized kernel PCA, Gaussian mixture modeling and ICA for fault detection in non-linear processes. Measurement Science and Technology, 35(7), 076208.


Khurshid, A., & Pani, A. K. (2023). Machine learning approaches for data-driven process monitoring of biological wastewater treatment plant: A review of research works on benchmark simulation model no. 1 (bsm1). Environmental Monitoring and Assessment, 195(8), 916.


Vijayan, S. V., Mohanta, H. K., Rout, B. K., & Pani, A. K. (2023). Adaptive soft sensor design using a regression neural network and bias update strategy for non-linear industrial processes. Measurement Science and Technology, 34(8), 085012.


Palla, G. L. P., & Pani, A. K. (2023). Independent component analysis application for fault detection in process industries: Literature review and an application case study for fault detection in multiphase flow systems. Measurement, 209, 112504.


Pani, A. K. (2022). Non-linear process monitoring using kernel principal component analysis: A review of the basic and modified techniques with industrial applications. Brazilian Journal of Chemical Engineering, 39(2), 327-344.


Arpitha, V., & Pani, A. K. (2022). Machine learning approaches for fault detection in semiconductor manufacturing process: A critical review of recent applications and future perspectives. Chemical and Biochemical Engineering Quarterly, 36(1), 1-16.


Venkatavijayan S., Mohanta, H. K., & Pani, A. K. (2022). Adaptive non-linear soft sensor for quality monitoring in refineries using Just-in-Time Learning—Generalized regression neural network approach. Applied Soft Computing, 119, 108546.


Venkatavijayan S., Mohanta, H. K., & Pani, A. K. (2021). Support vector regression modeling in recursive just-in-time learning framework for adaptive soft sensing of naphtha boiling point in crude distillation unit. Petroleum Science, 18(4), 1230-1239.


Maran Beena, A., & Pani, A. K. (2021). Fault detection of complex processes using nonlinear mean function based Gaussian process regression: application to the Tennessee eastman process. Arabian Journal for Science and Engineering, 46(7), 6369-6390.


Siddharth, K., Pathak, A., & Pani, A. K. (2019). Real-time quality monitoring in debutanizer column with regression tree and ANFIS. Journal of Industrial Engineering International, 15, 41-51.


Singh, H., Pani, A. K., & Mohanta, H. K. (2019). Quality monitoring in petroleum refinery with regression neural network: Improving prediction accuracy with appropriate design of training set. Measurement, 134, 698-709.


Morey, A., Pradhan, S., Kumar, R. A., Pani, A. K., Vijayan S, V., Jain, V., & Gupta, A. (2019). Pollutant monitoring in tail gas of sulfur recovery unit with statistical and soft computing models. Chemical Engineering Communications, 206(1), 69-85.


Pani, A. K., & Mohanta, H. K. (2016). Online monitoring of cement clinker quality using multivariate statistics and Takagi-Sugeno fuzzy-inference technique. Control Engineering Practice, 57, 1-17.


Pani, A. K., Amin, K. G., & Mohanta, H. K. (2016). Soft sensing of product quality in the debutanizer column with principal component analysis and feed-forward artificial neural network. Alexandria Engineering Journal, 55(2), 1667-1674.


Pani, A. K., & Mohanta, H. K. (2015). Online monitoring and control of particle size in the grinding process using least square support vector regression and resilient back propagation neural network. ISA transactions, 56, 206-221.


Pani, A. K., & Mohanta, H. K. (2014). Soft sensing of particle size in a grinding process: Application of support vector regression, fuzzy inference and adaptive neuro fuzzy inference techniques for online monitoring of cement fineness. Powder technology, 264, 484-497.


Pani, A. K., Vadlamudi, V. K., & Mohanta, H. K. (2013). Development and comparison of neural network based soft sensors for online estimation of cement clinker quality. ISA transactions, 52(1), 19-29.


Pani, A. K., & Mohanta, H. K. (2011). A survey of data treatment techniques for soft sensor design. Chemical Product and Process Modeling, 6(1).


Pani, A. K., & Mohanta, H. K. (2009). Application of Soft Sensors in Process Monitoring and Control: A Review. IUP Journal of Science & Technology, 5(4).