
Vehicular Communications 50 (2024) 100858

Contents lists available at ScienceDirect

Vehicular Communications

journal homepage: www.elsevier.com/locate/vehcom

Decentralized multi-hop data processing in UAV networks using MARL

Indu Chandran ∗, Kizheppatt Vipin

Department of Electrical and Electronics engineering, BITS Pilani, KK Birla Goa Campus, Zuari Nagar, Goa, India

A B S T R A C T

Unmanned Aerial Vehicles (UAVs) have become integral to numerous applications, prompting research towards enhancing their capabilities. For time-critical missions,
minimizing latency is crucial; however, current studies often rely on sending data to ground station or cloud for processing due to their limited onboard capacities.
To leverage the networking capabilities of UAVs, recent research focuses on enabling data processing and offloading within the UAV network for coordinated
decision-making. This paper explores a multi-hop data offloading scheme designed to optimize the task processing and resource management of UAVs. The proposed
distributed strategy uses multi-agent reinforcement learning, where UAVs, each with varying computational capacities and energy levels, process and offload tasks
while managing energy consumption and latency. The agents, represented as actor-critic models, learn and adapt their actions based on current state and environment
feedback. The study considers a consensus-based method to update learning weights, promoting cooperative behavior among the agents with minimum interaction.
Through multiple training episodes, the agents improve their performance, with the overall system achieving faster convergence with high rewards, demonstrating
the viability of decentralized data processing and offloading in UAV networks.
1. Introduction

Unmanned aerial vehicles have been explored across different in-

dustrial sectors including agriculture, disaster relief missions, product
delivery and many more [1]. This widespread popularity is mainly at-

tributed to its ease of flight, quick formations, coordinated mission ex-

ecution, and low cost of deployment [2]. Recent advancements in UAV
design have enabled these vehicles to carry higher payloads, including
cameras and advanced sensors, facilitating faster and more efficient data
collection. Additionally, developments in embedded technology have
equipped UAVs with enhanced processing and computational capabili-

ties, making them particularly valuable for time-critical missions such
as disaster monitoring and surveillance, where reducing latency in relief
efforts is crucial. In such scenarios, UAV nodes that frequently detect and
process events may deplete their energy more quickly than their peers.
Implementing data offloading schemes in these cases can significantly
enhance overall network performance. This approach is particularly
relevant in disaster scenarios such as wildfire monitoring, earthquake
search and rescue, or flood damage assessment, where communication
with the ground station may be unstable. For instance, during an earth-

quake, the ground dynamics can severely disrupt communication, mak-

ing on-board processing and offloading a more reliable option to reduce
operational latency.

Data offloading decisions are generally modeled as mixed integer
problems or as Markov approximations, however, these methods rely

* Corresponding author.

on heuristics, and so require considerably higher number of iterations
to reach the optimal value [3–5]. Thus, the above methods may not be
suitable for real-time decision making where there are frequent changes
involved in the working environment. In order to make learning-based
decisions, Reinforcement Learning (RL) has evolved as a potential solu-

tion overcoming the drawbacks of the conventional heuristic schemes.
Although considerable amount of research has been stated in literature,
the RL based schemes have been explored widely in meeting the grow-

ing computational demands of ground users [14,16]. The studies that
focus on offloading within the network during a surveillance have been
under explored, while those few have considered agent decisions as in-

dependent entities, where the decision of one agent does not rely on the
decisions taken by another agent. These studies thus do not address the
possibility of collaborative learning and decision making within a UAV
network.

In this paper, we propose the use of multi-hop data offloading us-

ing Multi-Agent Reinforcement Learning (MARL) to decide the fraction
of data that an agent will process locally, and the remaining fraction
that is offloaded, while minimizing latency and task completion time.
The UAVs are treated as agents and are assumed to fly in formation
to accomplish a surveillance mission. The study considers a decentral-

ized actor-critic (AC) framework, and incorporates a consensus update
mechanism, significantly enhancing co-operative behavior among UAV
agents. Each agent updates its policy and value function by incorporat-

ing feedback from other agents, thereby aligning their learning objec-
Available online 15 November 2024
2214-2096/© 2024 Elsevier Inc. All rights are reserved, including those for text and

E-mail addresses: p20200055@goa.bits-pilani.ac.in (I. Chandran), kizheppattv@g

https://doi.org/10.1016/j.vehcom.2024.100858

Received 27 June 2024; Received in revised form 23 October 2024; Accepted 11 No
data mining, AI training, and similar technologies.

oa.bits-pilani.ac.in (K. Vipin).

vember 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/vehcom
mailto:p20200055@goa.bits-pilani.ac.in
mailto:kizheppattv@goa.bits-pilani.ac.in
https://doi.org/10.1016/j.vehcom.2024.100858
https://doi.org/10.1016/j.vehcom.2024.100858

Vehicular Communications 50 (2024) 100858I. Chandran and K. Vipin

Table 1

A comparison of state-of-the art approaches.

Reference Architecture Algorithm Multi-agent Consensus-based Multi-hop Application Optimization parameter

[6] Distributed Q-Learning Yes No No IIoT Computation cost, energy, latency

[7] Centralized DNN No No No MEC Computation rate, energy

[8] Decentralized Q-Learning No No No IoT Computation cost, energy, latency

[9] Decentralized DNN Yes No No MEC Energy, latency

[10] Distributed DNN Yes Yes No MEC Energy, latency

[11] Decentralized Policy gradient Yes No No MIMO Energy, delay

[12] Distributed Policy gradient Yes No No MEC Time, load balancing

[13] Centralized DNN No No No MEC Computation cost, energy, latency

[14] Decentralized AC Yes Yes No UAV-MEC Computation cost, energy, latency

[15] Distributed DQN No No Yes UAV-MEC Computation cost, energy, latency

Proposed Decentralized AC Yes Yes Yes UAV-UAV Computation cost, energy, latency
tives. The actor update is performed by each agent independently, while
the critic update follows a consensus-based learning where the consen-

sus parameters are updated based on the learning progress of each agent.
The feedback from the critic is then used in the subsequent step for the
actor. Thus, by incorporating information from other agents, each agent
can make more informed updates to its policy and value functions. Dur-

ing training, agents decide actions based on current states, perform these
actions in the environment, and update their states while dynamically
adjusting the consensus weights. This iterative process fosters a coopera-

tive learning strategy, crucial for optimizing overall energy consumption
and latency in multi-UAV systems.

2. Background

Several reinforcement learning approaches have been proposed to
optimize computational task offloading in different environments. A re-

inforcement learning approach is proposed in [6] to optimize the of-

floading of computational tasks in Industrial Internet of Things envi-

ronments. The authors addressed the challenges of resource allocation
and task offloading by formulating these problems as a sum cost de-

lay framework and using Q-learning to derive optimal offloading deci-

sions. The authors of [17] addressed the challenge of communication
efficiency among agents that collaborate to learn policy values based
on private local rewards and joint state-action observations. In [18],
off-policy reinforcement learning is extended to multi-agent settings,
introducing a multi-agent version of emphatic temporal difference for
policy evaluation. Despite proving convergence under linear function
approximation, the adaptability of this method in non-linear scenarios
remains untested. A comprehensive review of theories and algorithms in
multi-agent reinforcement learning is provided in [19], with a focus on
the theoretical foundations of MARL, reviewing algorithms within the
frameworks of Markov/stochastic games and extensive-form games. Ref-

erence [20] discussed a binary offloading policy for mobile edge com-

puting (MEC) servers, presenting an efficient order-preserving policy
generation method. However, it does not address the potential latency
issues in high-density user scenarios.

In [21], a self-learning strategy for task offloading in UAV networks
is proposed, aiming to optimize edge computing resources. Although
it reduces task completion time and energy consumption, the reliance
on dynamic predictor selection can introduce computational overhead.
The authors of [5] proposed a solution to low computing capability
in low-power wireless networks using radio frequency-based wireless
power transfer and edge computing technologies. The approach, focus-

ing on binary computation offloading policy, may face challenges in
energy harvesting efficiency. A deep reinforcement learning-based on-

line offloading framework is proposed in [7] to optimize task offloading
and resource allocation in wireless powered mobile-edge computing net-

works. The framework uses a deep neural network to learn offloading
decisions from past experiences, significantly reducing computational
complexity. Recent advancements in decentralized MARL schemes are
2

reviewed in [8], covering various algorithmic frameworks. In [22], an
RL-based offloading scheme using energy harvesting is discussed, allow-

ing IoT devices to optimize offloading decisions without requiring MEC
model knowledge. A fully decentralized actor-critic algorithm relying
on neighbor-to-neighbor communication is analyzed in [23], aiming to
maximize the network-wide averaged long-term return. This approach,
though innovative, might suffer from communication delays in dense
networks. Reference [24] proposed a value propagation method com-

bining softmax temporal consistency and primal-dual decentralized op-

timization. This approach enables agents to learn collaboratively by
exchanging information only with their neighbors, preserving privacy
and security. An extension of actor-critic methods is discussed in [25],
that incorporates centralized training with decentralized execution, al-

lowing the critic to access additional information about other agent
policies while the actor operates with local information. This approach
facilitates learning policies that require complex coordination among
agents, however, the dependency on centralized training data can be a
limitation.

Reference [9] explored a deep reinforcement learning framework for
optimizing offloading decisions and resource allocation in mobile-edge
computing systems by mapping the input states, such as wireless channel
gains and edge CPU frequency, to binary offloading decisions. A dis-

tributed reinforcement learning in multi-agent systems is proposed in
[26], emphasizing the importance of collaborative learning and decen-

tralized decision-making. The approach combines consensus dynamics
with local innovations, enabling agents to update their value func-

tions based on both local observations and information received from
neighboring agents. Reference [10] addressed joint offloading decisions
and bandwidth allocation in MEC networks, proposing a distributed
deep learning-based offloading algorithm. While generating efficient of-

floading decisions, it may require significant computational resources.
In [11], a decentralized dynamic computation offloading strategy for
multi-user MEC systems is proposed, aiming to minimize long-term
average computation costs. The study considered deep deterministic
policy gradient (DDPG) to enable each user to independently learn ef-

ficient offloading policies from local observations. A multi-agent load
balancing distribution algorithm based on deep reinforcement learning
is introduced in [12] to address task offloading and resource allocation
challenges in edge computing. The algorithm, while enhancing system
robustness and scalability, may face issues with real-time adaptability.

A fully decentralized MARL framework is discussed in [27], propos-

ing two decentralized actor-critic algorithms that use local information
for the actor step and achieve consensus on value function estimates in
the critic step. A distributed architecture leveraging MARL is proposed
in [14] to dynamically offload tasks from UAVs to the edge cloud. The
approach is based on actor-critic framework where each agent performs
the actor step individually while sharing value function estimates with
neighbors during the critic step, aiming to minimize overall latency and
energy usage.

Table 1 outlines the relevant studies on data offloading schemes in
UAVs. Notably, no studies closely relate to offloading data to neighbors

in a multi-hop fashion, and they often treat tasks as independent enti-
ties, simplifying the analysis in coordinated environments. Although a

I. Chandran and K. Vipin

Fig. 1. Multi-hop data offloading scenario in a disaster environment, where 𝛼
denotes the fraction of data processed locally, and (1 − 𝛼) is the fraction that is
offloaded.

multi-hop offloading scenario is discussed in [15], it considers a central-

ized learning approach. The lack of focus on decentralized, multi-hop
offloading strategies highlights a critical gap in the literature, particu-

larly for applications in disaster response, where real-time coordination
and resilience against network disruptions are paramount.

3. System model

In our study, the agents are the UAVs collaboratively operating
in a disaster environment. The UAV network consisting of 𝑁 UAVs
distributed in an area, tasked with performing a coverage mission to
identify trivial events such as wild fires or landslides. During disaster
missions, a lot of data is generated in the form of images and videos.
Sending it to the ground control station for processing in a harsh and
dynamic environment may not be feasible as the network may expe-

rience frequent link disconnections. In such scenarios, data offloading
can be viable solution, where each UAV can process a portion of the
data and offload the remaining in a multi-hop fashion to its neighboring

UAVs. Fig. 1 depicts an example environment with 𝛼, 𝛼′ representing
the fraction of data locally processed by UAVs 𝑢1 and 𝑢2 respectively.
An important question to be answered here is on deciding the fraction
of data that a UAV can process locally based on its available energy and
computational resources, and the remaining fraction that it offloads to
its peers without burdening the network.

A task generated by a UAV can be defined in terms of its size and the
number of clock cycles to process 1 bit of information, and is represented
in the form of a tuple (𝑠, 𝑐) where 𝑠 denotes the task size and 𝑐 denotes
the clock cycles. The duration for which a UAV processes the fraction
of data is considered as a virtual time slot. Based on the amount of data
to be processed and the capabilities, the duration of the time slots may
vary. The study aims at computing the best processing and offloading
decision that minimizes the overall latency in processing a task and the
energy consumption of the nodes involved in data offloading.

Considering a disaster mission, the number of UAVs may also vary
over time due to failures, energy exhaust or loss of communication.
However, for simplicity and to avoid ambiguity, the number of UAVs
is always represented as 𝑁 . Moreover, UAVs are assumed to fly in for-

mation for the ease of control in such critical missions. Formations such
as linear or V-shape are generally preferred [28]. In these formations,
the neighbor UAVs are more or less fixed as the nodes share data on their
positions to remain in formation. Without losing generality, the route for
task offloading is taken as 𝑢1 → 𝑢2 → 𝑢3 →⋯ → 𝑢𝑛, where 𝑛 is the last
UAV in the formation. A UAV 𝑢𝑖 processes a fraction 𝛼 of the data that it
receives from UAV 𝑢𝑖−1, and offloads (1 −𝛼) of the data to the next UAV.
Therefore the sub-tasks are dependent. Further, it is assumed that the
total task size generated by any UAV does not exceed the overall pro-

cessing capacity of the network. After the task is processed, each UAV
sends the information back to the UAV that generated the task along
the same route. Therefore, time taken to send back the information also
adds to overall latency. This often depends on the time taken by the last
UAV to send back the information as the previous UAVs start processing
3

the tasks at an early stage. However, since it is a multi-hop processing,
Vehicular Communications 50 (2024) 100858

the amount of data that the last UAV processes will be comparatively
smaller considering that only the remaining fraction is forwarded. Thus,
the latency to send back the information can be ignored as is commonly
assumed in similar studies [14,15].

3.1. Mathematical formulation of UAV network dynamics

Considering the dynamic and harsh operating environment for the
UAVs, variations in the channel parameters can affect the offloading
choice of each UAV.

3.1.1. Channel model

Since UAVs are operating in free-space at a considerable altitude
from the ground level, it can be assumed that Line-of-Sight (LoS) path
exists between UAVs. The channel gain ℎ𝑔(𝑖, 𝑗) between two UAVs 𝑢𝑖
and 𝑢𝑗 can be represented as given in (1) and is influenced by various
factors such as distance, path loss and fading.

ℎ𝑖,𝑗 (𝑡) =
(
4𝜋𝑓
𝑐

)−2
𝜇LoS𝑑

−𝛽LoS(𝑡)
𝑖,𝑗

|ℎRice
𝑖,𝑗

(𝑡)|2 (1)

Here, ℎRice
𝑖,𝑗

(𝑡) ∼ Rice(𝑣, 𝛿); Rice(𝑣, 𝛿) refers to the Ricean distribution
with parameters 𝑣 and 𝛿; 𝑑𝑖,𝑗 (𝑡) is the Euclidean distance between
UAVs 𝑢𝑖 and 𝑢𝑗 and is calculated as, 𝑑𝑖,𝑗 (𝑡) = ‖𝐫𝑖(𝑡) − 𝐫𝑗 (𝑡)‖, where
𝐫𝑖(𝑡) = (𝑥𝑖(𝑡), 𝑦𝑖(𝑡), 𝑧𝑖(𝑡)) and 𝐫𝑗 (𝑡) = (𝑥𝑗 (𝑡), 𝑦𝑗 (𝑡), 𝑧𝑗 (𝑡)) are the position co-

ordinates of UAV 𝑖 and 𝑗 respectively. The term (4𝜋𝑓
𝑐
)−2 represents the

scaling factor for signal attenuation due to path loss in free-space prop-

agation, where 𝑓 is the frequency of the transmitted signal and 𝑐 is the
speed of light. 𝜇LoS is the attenuation factor, and 𝛽LoS(𝑡) is the path loss
exponent for LoS that varies with distance 𝑑.

3.1.2. Transmission rate

The transmission rate of a UAV 𝑢𝑖 to offload data to its neighbor

𝑢𝑖+1 during a virtual time slot 𝑡 is represented as (2), and is a factor of
transmission power and bandwidth.

𝑇 𝑟
𝑢𝑖,𝑢𝑖+1

=𝐵 log2

(
1 +

𝑃𝑢𝑖
(𝑡)
𝑃n

ℎ𝑢𝑖,𝑢𝑖+1

)
(2)

Here, 𝐵 represents the bandwidth allocated to each node, while 𝑃𝑛
denotes the noise power. The term ℎ𝑢𝑖,𝑢𝑖+1 refers to the channel gain
between node 𝑢𝑖 and node 𝑢𝑖+1; 𝑃𝑢𝑖 (𝑡) is the transmission power of 𝑢𝑖,
and 𝑃𝑚𝑎𝑥

𝑢𝑖
is its maximum value.

3.1.3. Energy consumption

Each UAV has its own energy and computational capability. A UAV
decides to process 𝛼 fraction of the task it receives and offloads (1 − 𝛼).
Therefore, the total energy consumption is the sum of the energy con-

sumed to process the data fraction and the energy consumed to offload
the remaining data to its neighboring UAV.

The energy consumed by UAV 𝑢𝑖 to process the data locally at time
slot 𝑡 can be formulated as (3).

𝐸𝑖
𝑐𝑜𝑚𝑝

(𝑡) = 𝑠𝑐𝛼𝑡
𝑡−1∏
𝑡′=0

(1 − 𝛼𝑡′)𝐸𝑢𝑖 (3)

where 𝐸𝑢𝑖 represents the CPU energy consumption needed to execute
one cycle at node 𝑢𝑖, and 𝐸𝑢𝑚𝑎𝑥

𝑖
is its maximum value; 𝛼 is the fraction

of task processed locally, and (1 − 𝛼′) refers to the fractions of the task
that were offloaded in previous time slots up to 𝑡 − 1; 𝑠 and 𝑐 are the
task size and the clock cycles required to process 1 bit, respectively. The
product term aggregates the energy consumed across all previous time
slots 𝑡′ = 0 to 𝑡′ = 𝑡 − 1 since the remaining task size to be processed
locally at each time slot depends on what was offloaded in previous
slots.

The energy required to offload the data to the next UAV at time slot

𝑡 is computed as (4).

I. Chandran and K. Vipin

𝐸𝑖
𝑜𝑓𝑓

(𝑡) = 𝑠(1 − 𝛼𝑡)
𝑡−1∏
𝑡′=0

(1 − 𝛼𝑡′)𝑇 𝑟𝑢𝑖,𝑢𝑖+1𝑃𝑢𝑖 (𝑡) (4)

where the transmit power 𝑃𝑢𝑖 (𝑡) of node 𝑢𝑖 remains below its maximum
allowed value 𝑃𝑚𝑎𝑥

𝑢𝑖
; (1 − 𝛼) is the fraction of task offloaded in time slot

𝑡, and (1 − 𝛼′) refers to the fractions of the task that were offloaded in
previous time slots up to 𝑡 − 1; 𝑇 𝑟𝑢𝑖,𝑢𝑖+1 is the transmission rate.

3.1.4. Latency

The duration 𝐷 of a time slot 𝑡 depends on the time taken by a UAV to
process the data locally and the time taken for offloading. The processing
time can be represented as (5).

𝑇 𝑖
𝑐𝑜𝑚𝑝

(𝑡) =
𝑠𝑐𝛼𝑡

∏𝑡−1
𝑡′=0(1 − 𝛼𝑡′)
𝑅𝑢𝑖

(𝑡)
(5)

where 𝑅𝑢𝑖 (𝑡) represents the available computation resource for node 𝑢𝑖
at 𝑡, measured in cycles per second, and is less than the computation
capacity limit 𝑅𝑚𝑎𝑥

𝑢𝑖
of the UAV.

The offloading time can be represented as (6), where the numerator
represents the total amount of data to be transmitted, and the denomi-

nator is the transmission rate as defined in (2).

𝑇 𝑖
𝑜𝑓𝑓

(𝑡) =
𝑠(1 − 𝛼𝑡)

∏𝑡−1
𝑡′=0(1 − 𝛼𝑡′)

𝑇 𝑟
𝑢𝑖,𝑢𝑖+1

(6)

Since processing and offloading happen in parallel, the slot duration is
the maximum of both the values as denoted in (7).

𝐷𝑖
𝑡
=max(𝑇 𝑖

𝑐𝑜𝑚𝑝
(𝑡), 𝑇 𝑖

𝑜𝑓𝑓
(𝑡)) (7)

3.2. Proposed MARL algorithm formulation

In an MARL environment, each agent independently makes deci-

sions based on its local observations and the joint observations gathered
through interactions with other agents in the environment. To achieve
this, all agents agree upon a global policy that aligns with their collective
goals while simultaneously adhering to their individual local policies.
The decision of each agent is influenced by a reward value that indi-

cates the effectiveness of their actions, and operates with the goal of
maximizing these rewards. In this study, we apply MARL framework us-

ing the Actor-Critic (AC) method to find the most efficient offloading
strategy for each agent in the network. The actor represents the policy
𝜋(𝑎|𝑠), which selects actions based on the current state 𝑠 and the critic
evaluates the actions taken by the actor by estimating value functions.
It provides feedback by assessing how well the actions are, and guides
the policy towards optimal actions. The decision-making process is in-

fluenced by the current state of the UAV, which includes the remaining
task size, energy levels, and computational capacity.

The optimization problem of task offloading is defined as

< 𝑆, 𝐴, 𝑃 , 𝑅 >, where 𝑆, 𝐴, 𝑃 , 𝑅 are the elements of RL and is referred
to as state space, action space, transition probability, and reward func-

tion respectively. The state space 𝑆 at time slot 𝑡 defines the state of the
environment, and in the study, it consists of the following elements:

• Remaining Task Size (s): The amount of data (in bits) the UAV still
needs to process or offload.

• Energy Level (E): The remaining energy of the UAV at time 𝑡, mea-

sured in joules or percentage.

• Computation Capacity (C): The number of CPU cycles per second
available for task processing.

The action space 𝐴 consists of discrete set of actions that the UAVs take
at slot 𝑡 and can be represented as (8) where a value 1 indicates that the
data received is completely offloaded to the next UAV, and 0 if the UAV
can process the entire data and no fraction is offloaded. While the state
4

set 𝑆 and action set 𝐴 are shared among the UAVs, the actions 𝑎𝑢 taken
Vehicular Communications 50 (2024) 100858

by each UAV, and reward 𝑟𝑢 it receives remains local to the UAV, thus,
making the system decentralized in nature.

𝐴 =
{
𝛼𝑖 ∈ (0,1) ∪

{
0, 1
𝑘
,
1
2𝑘
,… ,

𝑘− 1
𝑘
,1
}}𝑛

𝑖=1
(8)

The utility value (𝑊𝑖) that represents how good it is to remain in a state
for a given action, is represented as (9), where 𝐸𝑖

𝑐𝑜𝑚𝑝
(𝑡) and 𝐸𝑖

𝑜𝑓𝑓
(𝑡) de-

fined in (3) and (4), represents the energy costs, 𝐷𝑖
𝑡

denotes the latency
cost, and 𝑝1, 𝑝2 ∈ [0, 1] are the associated weights.

All the UAVs collaborate to find the optimal global policy 𝜋𝜃𝑔 that is
to maximize the average long-term return across all UAVs, using the lo-

cally available information. In the study, rewards are assigned according
to how well the offloading strategy of each UAV contributes to minimiz-

ing the overall latency of task completion and the energy consumption
as given in (10). This way, we aim to guide the UAVs towards poli-

cies that effectively balance task processing and offloading to achieve
the best overall performance in terms of both latency and energy effi-

ciency. The reward function is therefore calculated as (9) and the policy
is denoted as (10),

𝑊 𝑖
𝑡
= 𝑝1(𝐸𝑖𝑐𝑜𝑚𝑝(𝑡) +𝐸

𝑖
𝑜𝑓𝑓

(𝑡)) + 𝑝2𝐷𝑖𝑡 (9)

𝑓𝜋
𝑚𝑖𝑛

=
∞∑
𝑡=0
𝛾𝑡𝑊

𝑖
𝑡
(𝑠𝑡, 𝑎𝑡)

|||||
∑

(𝑇 𝑖
𝑐𝑜𝑚𝑝

+ 𝑇 𝑖
𝑜𝑓𝑓

) ≤ 𝑇𝑚𝑎𝑥 (10)

where 𝛾𝑡 ∈ [0, 1] is the discount factor, 𝑎𝑡 is the action taken by the policy
at state 𝑠𝑡 at time 𝑡 and 𝑇𝑚𝑎𝑥 is the maximum permitted task completion
time that depends on the application. The overall time to process a task
must not exceed 𝑇𝑚𝑎𝑥.

The gradient of long-term average 𝐽 (𝜃), action-value 𝑄𝜃 and advan-

tage function 𝐴𝜋𝜃 in the MARL environment can be formulated as,

∇𝜃𝑢𝐽 (𝜃𝑔) = 𝔼𝜋𝑔
[
∇𝜃𝑢 log𝜋𝜃𝑢 (𝑎𝑢 ∣ 𝑠)𝐴

𝜋𝑔 (𝑠, 𝑎)
]

(11)

where, ∇𝜃𝑢𝐽 (𝜃𝑔) represents the gradient of the objective function
𝐽 (𝜃𝑔) with respect to the parameters of UAV 𝑢; 𝐴𝜋𝑔 (𝑠, 𝑎) = 𝑄𝜋𝑔 (𝑠, 𝑎) −
𝑉
𝜋𝜃𝑢 (𝑠, 𝑎−𝑢); 𝑉 𝜋𝜃𝑢 (𝑠, 𝑎−𝑢) is the baseline value and gives the average

expected reward for UAV 𝑢 considering the actions of all other UAVs
except 𝑢. This baseline is introduced to reduce variance in the gradient
estimates.

While directly knowing 𝑎−𝑢 would provide the most accurate gradi-

ents, it is not always possible in practical cases. However, with global
estimates of action-value and advantage functions, the necessary in-

formation can be approximated to compute gradients using the score
function. But, local information alone is insufficient to calculate the
global estimates, as it relies on the local rewards averaged across all the
UAVs. Therefore, a learning based consensus method is proposed to al-

low UAVs to update their policies based on the information shared. Each
UAV calculates its learning progress, which is the difference between its
current and previous average return estimates (𝜇). This progress indi-

cates how much the UAV has learned recently. For each UAV 𝑢, the
learning progress is calculated as,

𝑙𝑢 = 𝜇𝑡𝑢 − 𝜇
𝑡−1
𝑢
, ∀𝑢 ∈𝑈 (12)

Using this learning progress, the UAVs calculate consensus weights,
which determine how much influence other UAVs have on its actions.
The weight 𝐶𝑤 between two UAVs 𝑖 and 𝑗 ∶ 𝑖, 𝑗 ∈𝑈 and is computed as,

𝐶𝑤𝑖𝑗
= 𝑟𝑖 ⋅ 𝑙𝑖 + 𝑟𝑗 ⋅ 𝑙𝑗 , ∀𝑖, 𝑗 ∈𝑈 (13)

where 𝑟𝑖 and 𝑟𝑗 are the learning rates for UAVs, 𝑙𝑖 and 𝑙𝑗 are the learning
progress for UAVs 𝑖 and 𝑗 respectively. These weights are updated using
a smoothing factor 𝜙 as shown in (14), where 𝐶𝑡 is the consensus matrix
representing the relationship between UAV 𝑢 and all other UAVs in the
environment.
𝐶𝑡[𝑖, 𝑗] = 𝜙 ⋅𝐶𝑡−1[𝑖, 𝑗] + (1 − 𝜙) ⋅𝐶𝑤𝑖𝑗 (14)

I. Chandran and K. Vipin

Fig. 2. MARL framework with consensus update.

The smoothing factor helps in gradually adjusting the weights rather
than making abrupt updates. Finally, the consensus matrix 𝐶𝑡 is nor-

malized so that the weights for each UAV sum up to one, maintaining a
valid probability distribution, as denoted in (15),

𝐶𝑡[𝑖,∶] =
𝐶𝑡[𝑖,∶]∑
𝑗 𝐶𝑡[𝑖, 𝑗]

(15)

This normalization ensures that the influence of all UAVs in decision-

making is balanced.

Once the consensus weights are calculated, each UAV updates its av-

erage return estimate 𝜇. Instead of relying solely on its own rewards, an
UAV now considers a weighted sum of rewards from all UAVs, where the
weights are derived from the consensus matrix. This allows the UAV to
benefit from the experiences of other UAVs, leading to a more compre-

hensive understanding of the environment. The updated average return
estimate for each UAV is calculated as,

𝜇𝑖
𝑡+1 = (1 − 𝜀𝑣,𝑡) ⋅ �̂�𝑖𝑡 + 𝜀𝑣,𝑡 ⋅

∑
𝑗

𝐶𝑡[𝑖, 𝑗] ⋅ 𝑘
𝑗

𝑡+1 (16)

where �̂�𝑖
𝑡
= (1 −𝜀𝑣,𝑡) ⋅𝜇𝑖𝑡+𝜀𝑣,𝑡 ⋅𝑘

𝑖
𝑡+1. The term (1 −𝜀𝑣,𝑡) ⋅𝜇𝑖𝑡 ensures that the

new estimate is influenced by the past estimate, providing stability and
smoothing the updates over time. The first term of (16) carries forward
the preliminary updated average return estimate �̂�𝑖

𝑡
scaled by (1 − 𝜀𝑣,𝑡).

The second term of (16) aggregates the rewards received by all UAVs,
weighted by the consensus matrix 𝐶𝑡[𝑖, 𝑗] and scaled by the step size
𝜀𝑣,𝑡.

Each UAV then updates its state-value function, which estimates how
good a particular state is. The value function gradient update is per-

formed as follows,

�̂�𝑖
𝑡
= 𝑣𝑡 + 𝜀𝑣,𝑡 ⋅ 𝛿𝑖𝑡 ⋅∇𝑣𝑉𝑡(𝑣

𝑖
𝑡
) (17)

where, 𝛿𝑖
𝑡
= 𝑘𝑖

𝑡+1 − 𝜇
𝑖
𝑡
+ 𝑉𝑡+1(𝑣𝑖𝑡) is the Temporal Difference (TD) error,

𝑘𝑡+1 is the immediate reward, 𝜇𝑖
𝑡

is the average return estimate, and 𝑣𝑡 ,
�̂�𝑡 are the value estimates before and after the action. The value function
is then updated based on the consensus weights as,

𝑣𝑖
𝑡+1 =

∑
𝑗∈𝑁

𝐶𝑡[𝑖, 𝑗] ⋅ �̂�
𝑗

𝑡
(18)

The UAV also updates its reward function 𝑅(𝑠, 𝑎) parameterized by 𝜆,
based on its local observations. The parameter 𝜆 is adjusted iteratively
to minimize the difference between these estimated rewards and the
actual observed reward values. This is expressed as,
5

�̂�𝑖
𝑡
= 𝜆𝑖

𝑡
+ 𝜀𝑣,𝑡 ⋅ (𝑘𝑖𝑡+1 − �̄�𝑡(𝜆

𝑖
𝑡
)) ⋅∇𝜆�̄�𝑡(𝜆𝑖𝑡) (19)
Vehicular Communications 50 (2024) 100858

Algorithm 1 Decentralized MARL with Consensus Update.

1: Initialize parameters:

2: 𝜃𝑔 : global policy parameter

3: 𝜔: action-value function parameter

4: 𝑣: state-value function parameter

5: 𝜆: reward function parameter

6: 𝜇: average return estimate

7: 𝐶𝑤 : consensus weight

8: 𝛾 : discount factor

9: 𝜀𝑣,𝑡, 𝜀𝜔,𝑡, 𝜀𝜃,𝑡: step sizes

10: for each UAV 𝑢 do

11: Initialize local estimates 𝜃𝑢, 𝜔𝑢, 𝑣𝑢, 𝜆𝑢, 𝜇𝑢
12: Initialize consensus weights 𝐶𝑤𝑢
13: Initialize local policy 𝜋𝑢
14: end for

15: for each episode do

16: for each time slot 𝑡 do

17: for each UAV 𝑢 do

18: Observe current global state 𝑠
19: Select action 𝑎𝑢 based on local estimate of global policy 𝜋𝑢(𝑠; 𝜃𝑢)
20: Execute action 𝑎𝑢 and observe reward 𝑟𝑢 and next global state 𝑠′
21: Compute TD error:

𝛿𝑡 = 𝑘𝑡+1 − 𝜇𝑡 +𝑄(𝑠𝑡+1, 𝑎𝑡+1)
22: Update local value function parameters

𝑣𝑡+1 = 𝑣𝑡 + 𝜀𝑣,𝑡 ⋅ 𝛿𝑡 ⋅∇𝑣𝑉 (𝑠𝑡; 𝑣𝑡)
23: Compute advantage function:

𝐴𝑢 =𝑄𝑢(𝑠, 𝑎𝑢; 𝜔𝑢) − 𝑉𝑢(𝑠; 𝑣𝑢)
24: Update local policy parameters: 𝑣𝑢, 𝜔𝑢, 𝜃𝑢
25: Compute learning progress 𝑙𝑢
26: Compute consensus weights 𝐶𝑤𝑢 based on learning progress

27: Update local average return estimate 𝜇𝑢 based on 𝐶𝑤𝑢
28: Normalize consensus matrix 𝐶𝑡
29: Update local estimates of global parameters 𝜃𝑢, 𝑣𝑢, 𝜆𝑢 based on con-

sensus weights and information from neighboring UAVs

30: end for

31: Average all local estimates of global parameters to update the global
parameters 𝜃𝑔, 𝑣, 𝜇

32: end for

33: end for

34: return optimized global policy 𝜋𝑔 for all UAVs

Here, �̄�𝑡 represents the average estimate of the reward function across
all the UAVs. A consensus step ensures alignment of 𝜆 across UAVs, and
is obtained as,

𝜆𝑖
𝑡+1 =

∑
𝑗∈𝑁

𝐶𝑡[𝑖, 𝑗] ⋅ 𝜆
𝑗

𝑡
(20)

It is to be noted that these updates are performed by the critic of the
UAVs. On the other hand, the actor tries to improve the policy based on
the evaluations provided by the critic. This involves updating the policy
parameters 𝜃𝑖 to improve the selection of actions. The actor uses the
estimate �̄�𝑡(𝜆𝑖) to evaluate the globally averaged TD error,

𝛿𝑖
𝑡
= �̄�𝑡(𝜆𝑖𝑡) − 𝜇

𝑖
𝑡
+ 𝑉𝑡+1(𝑣𝑖𝑡) − 𝑉𝑡(𝑣

𝑖
𝑡
) (21)

It further updates 𝜃𝑖 as,

𝜃𝑖
𝑡+1 = 𝜃

𝑖
𝑡
+ 𝜀𝜃,𝑡 ⋅ 𝛿𝑖𝑡 ⋅𝜑

𝑖
𝑡

(22)

where 𝜑𝑖
𝑡
= ∇𝜃𝑖 log𝜋

𝑖
𝜃𝑖
(𝑠𝑡, 𝑎𝑖𝑡). The parameters 𝜇, 𝑣, and 𝜆 are shared

across the UAVs. By sharing and aligning these parameters, the UAVs
can leverage the collective knowledge and experiences to make more
effective and coordinated learning decisions. Fig. 2 visually represents
the MARL framework with consensus updates. The detailed procedure
of the proposed method is outlined in Algorithm 1.

4. Performance evaluation

In this section, we evaluate the performance of the proposed MARL

solution. The evaluations are performed on Intel(R) Core(TM) i5-

I. Chandran and K. Vipin

Table 2

Parameter values.

Parameter Value

Number of UAVs 5-200

Computation capacity 500-2500

Initial energy 5350 mAh

Initial task size 1000 bits

Transmission power 0.1 W

Energy consumption per CPU cycle 1 × 10−9 J/cycle

Number of CPU cycles per bit 1000 cycles per bit

Carrier frequency 2.4 GHz

Speed of light 3 × 108 m/s

Path loss exponent 2

Power of noise 10−13 W

Bandwidth 106 Hz

Distance between UAVs 100 meters

𝑇𝑚𝑎𝑥 300 milliseconds

Rice factor 0.5 + 0.5j

Discount factor 0.995

Dimension of the state space 4

Number of discrete actions 11

epsilon 0.1

𝜙 0.5

𝑝1, 𝑝2 0.5

Number of episodes 2000

10300H processor operating at 2.50 GHz using python TensorFlow li-

braries.

4.1. Network setup

In the study, we initialize a set of environmental parameters critical
for evaluating UAV communication and computation offloading. The
transmission power for each UAV is set at 0.1 𝑊 , ensuring energy-

efficient operation while maintaining connectivity. The energy con-

sumption per computation cycle is defined as 1 × 10−9 J, which aligns
with modern low-power processing units. Each bit of data requires 1000
CPU cycles to process, reflecting the complexity of computational tasks
in real-time scenarios. The carrier frequency is set at 2.4 GHz, a com-

mon frequency used in UAV communication systems due to its balance
between range and bandwidth. The speed of light, 3 ×108 m/s, is consid-

ered for signal propagation calculations. The path loss exponent for line-

of-sight (LoS) communication is set to 2, reflecting typical free-space
conditions. The noise power is set at 10−13 W, indicative of low-noise
environments. The communication bandwidth is set to 106 Hz, suitable
for high-speed data transmission. An additional path loss factor of 1.5 is
included, accounting for additional losses in realistic scenarios. Table 2

lists the network parameter values used in the study.

The environment is instantiated with specific parameters such as
state dimension, number of agents, agent ID, hidden units in the neural
network, and learning rate. Each agent in the AC model involves two
neural networks: the actor network, which determines the actions, and
the critic network, which evaluates these actions by estimating the value
functions. Both the networks are constructed using 𝑇 𝑒𝑛𝑠𝑜𝑟𝐹 𝑙𝑜𝑤 API.

The actor network consists of two layers: a hidden layer with 64
units, that uses the 𝑅𝑒𝐿𝑈 activation function for introducing non-

linearity, and an output layer with units equal to the number of possible
actions, which in our case is 11 discrete values between 0 and 1. It uses
the 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 activation function to produce a probability distribution
over the actions, ensuring that the sum of probabilities is 1. Similar to
the actor network, the critic network has a hidden layer with the same
number of units and 𝑅𝑒𝐿𝑈 activation function. This layer processes the
input state to extract relevant features for value estimation. The output
layer of the critic network has a single unit, providing a scalar value
that represents the estimated value of the current state. The training of
both networks involves gradient descent using TensorFlow GradientTape.
To prevent the gradients from becoming too large and destabilizing the
training process, gradient clipping is applied, which restricts the gradi-
6

ents within a specified range. The consensus weights are initialized to
Vehicular Communications 50 (2024) 100858

Fig. 3. Utility plot of different multi-agent algorithms for varying episodes.

Fig. 4. Utility plot for varying number of agents.

a uniform distribution, ensuring that initially, each agent gives equal
importance to every other agent in the system, and the step sizes 𝜀𝜃,𝑡
and 𝜀𝑣,𝑡 are set to 0.001 and 0.01 respectively to balance stability and
convergence speed as considered in [14].

4.2. Result analysis

In this section, we present the analytical results and compare the
proposed solution with similar studies. While no directly comparable
work was found in the literature on multi-hop data offloading, we have
benchmarked our analysis against studies [15] and [14], which are
recent and relevant to offload decision-making in UAV networks. As
discussed in Section 2, [14] examines a decentralized actor-critic MARL
environment, using a Laplacian matrix update for consensus weights.
The weights are predetermined and do not adapt to changing condi-

tions or the performance of individual agents. The authors employed
softmax and ReLU activation functions in the neural network with 64
hidden units, similar to our study. However, they assume tasks to be
independent and the data is not processed in a multi-hop manner, simpli-

fying the formulation. In contrast, [15] investigates a centralized control
actor-critic RL environment, exploring the multi-hop offloading with a
detailed analysis of the concepts.

Fig. 3 illustrates the performance comparison of the proposed learn-

ing consensus-based update MARL with the state-of-the-art schemes.

The plot clearly justifies the advantage of the proposed method over

I. Chandran and K. Vipin

Fig. 5. Computation time for varying distance between agents.

the static laplacian matrix and centralized MARL approaches in opti-

mizing task processing and resource management in UAV networks. The
proposed learning based method achieves higher utility values and con-

verges faster than the other methods demonstrating its effectiveness in
quickly learning and adapting optimal policies. In contrast, the plot for
the laplacian matrix method discussed in [14] shows a slower increase in
utility value and converges at a lower level. This indicates that while the
static consensus weights derived from the laplacian matrix ensure some

degree of co-operation among UAVs, it lacks the adaptability required to
respond quickly to dynamic changes in the environment or agent states.
Faster convergence is particularly important in time-sensitive applica-

tions where rapid decision-making can significantly impact the success
of the mission. On the other hand, the plot for centralized MARL ap-

proach discussed in [15] shows a much slower convergence rate, and
this could be due to its dependence on the central controller to gather
information and make decisions for the entire network.

A superior scalability of the proposed learning based method is evi-

dent in Fig. 4 which shows a plot of utility value with varying number
of agents in the network. As the number of agents increases, the pro-

posed method shows a steady rise in utility because each UAV can
autonomously decide how to manage its energy and computational re-

sources, thereby optimizing task completion times and reducing latency.
This adaptive decision-making ensures that as more UAVs are intro-

duced, tasks are distributed more efficiently across the network, leading
to improved overall system performance. In contrast, the Laplacian ma-

trix method shows a more gradual improvement, as it relies on a static
consensus approach that lacks the real-time adaptability seen in the
proposed method. Meanwhile, the centralized method suffers from scal-

ability issues, as the increasing number of UAVs leads to communication
bottlenecks and inefficient task management, which results in declining
utility as the network size grows. Therefore, the analysis affirms that
the proposed method is well-suited for large-scale deployments where a
high number of UAVs are involved. On the other hand, while the lapla-

cian matrix method may be suitable for moderate-scale deployments,
the centralized approach is less ideal for large-scale UAV networks due
to its poor scalability and lower utility values, making it less efficient
for applications requiring extensive coordination among agents.

Fig. 5 compares total computation time as a function of average
distance between agents. As distance increases, the total computation
time rises for all methods. As observed in the plot, the laplacian ma-

trix method is more efficient in terms of computation time, making it
suitable for scenarios where minimizing computation time is critical,
and the environment is less dynamic. The adaptive consensus mecha-

nism in the proposed method likely introduces additional computational
overhead due to dynamic adjustments, which contributes to higher com-
7

putation times compared to the static laplacian method. However, its
Vehicular Communications 50 (2024) 100858

Fig. 6. Cost analysis with varying number of hidden units in the actor-critic
network.

Fig. 7. Energy consumption for varying clock cycles per bit processing.

Fig. 8. Energy consumption with varying number of agents.

ability to adapt and handle dynamic environments better justifies its
use in complex and large-scale UAV networks where such flexibility and
robustness are critical, despite their slightly higher computation time.

To achieve optimal performance, it is important to select an appro-

priate number of hidden units in the neural network for the actor and the

critic. The results plotted in Fig. 6 indicate that a model with 64 hidden

I. Chandran and K. Vipin

Fig. 9. Energy consumption for varying distance between agents.

units achieves optimal performance, balancing model complexity and
prediction accuracy. With 32 units, the TD error is the highest, around
40. This suggests that the model is under-fitting, making it less suitable
for capturing the complexity of the environment and in making accurate
predictions. With 64 units, the model shows reduced TD error value,
suggesting that 64 hidden units provide a better representation of the
environment. The error remains relatively low, slightly above 20, sug-

gesting that an increase from 64 to 128 does not significantly improve
the model performance. With 256 hidden units, a marginal increase in
error is observed, possibly due to over-fitting where the model becomes
too complex and captures noise in the training data. Therefore, we have
set the number of hidden units to 64 in the study.

For battery-operated UAV networks, maintaining energy efficiency
is crucial. To better evaluate and understand the performance of the
network in terms of energy, Fig. 7 plots the correlation between the
number of clock cycles required to process a single bit of data and the
energy consumed. At lower clock cycles, the energy consumption is min-

imal, around 0.1 to 0.2 joules. As the number of clock cycles increases
to around 400-600, the energy consumption rises steadily to about 0.5
joules. A more significant increase is observed as the number of clock
cycles approaches 1000, reaching up to approximately 2.0 joules. The
significant rise in energy consumption beyond 600 clock cycles implies
that it is critical to optimize computational tasks to stay within a lower
clock cycle range. Therefore, maintaining an optimal range of clock
cycles can significantly enhance the energy efficiency of the network,
allowing UAVs to operate longer and perform more tasks.

As the number of agents increases, the energy consumption of the
agents also rises, as illustrated in Fig. 8. This increase in energy con-

sumption indicates a corresponding increase in communication over-

head with the growing number of agents. It is clear that as the number
of agents increases, the energy consumed by the agent that acts as the
central controller in the centralized scheme depletes its energy at a faster
rate compared to the other two approaches. Although the proposed
method primarily involves sharing only three key parameters among
agents to achieve consensus, these parameters must be disseminated
across the entire network to ensure effective coordination. The need for
frequent updates of these parameters—due to the learning involved—

results in higher energy consumption compared to the static Laplacian
matrix method. However, the increase in overhead and communication
costs represents a trade-off for the substantial benefits offered by decen-

tralized approaches, including reduced computation time, better scala-

bility, adaptability, and reduced dependency on a central controller.

Fig. 9 shows the relationship between energy consumption and the
average distance between agents for all three methods. The laplacian
matrix approach has the lowest increase, suggesting better energy effi-
8

ciency in managing the increased distances between agents, while the
Vehicular Communications 50 (2024) 100858

centralized method exhibits the highest energy consumption across all
distances, indicating inefficiency in handling longer distances between
agents. The proposed method shows an increase in energy consump-

tion with distance but remains lower than [15] and only slightly higher
than [14]. This increase in energy consumption compared to static meth-

ods can be due to the computations for policy updates, value function
estimations, and adaptation based on feedback from the environment.
Therefore, this is a reasonable trade-off for the significant advantages
it provides in terms of adaptability, scalability, and improved decision-

making.

5. Conclusion and future work

The work proposed a multi-agent reinforcement learning approach
for multi-hop data offloading in UAV networks. By dynamically adjust-

ing the consensus weights based on the learning progress of each agent,
the system ensures that all agents benefit from the collective learning
experience. This adaptability is crucial in environments where condi-

tions can change rapidly, such as in disaster response missions. The
laplacian matrix method discussed in literature, while better than the
centralized approach, falls short in adapting to larger networks due to
its static consensus weights. The centralized approach, with its inherent
communication and control limitations, shows the poorest performance,
highlighting the inefficiency of centralized decision-making in large and
dynamic environments. While the proposed method shows a moderate
increase in computation time and energy consumption, this is a trade-

off achieved for the adaptability, improved decision-making capabilities
and overall efficiency achieved by the network.

Future study will focus on evaluating agent performance when han-

dling multiple tasks in parallel, which may introduce increased compu-

tational complexity but offer a more realistic assessment. Additionally,
investigating the fault tolerance of these networks during data offload-

ing and assessing the impact of environmental factors such as wind and
obstacles through real-world experiments would be valuable. Address-

ing security challenges by developing secure communication protocols
and intrusion detection mechanisms also represents a critical area for
future work.

CRediT authorship contribution statement

Indu Chandran: Writing – review & editing, Writing – original draft,
Software, Methodology, Formal analysis, Conceptualization. Kizhep-

patt Vipin: Writing – review & editing, Visualization, Validation, Su-

pervision, Conceptualization.

Funding

This manuscript received no funding.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

Data will be made available on request.

References

[1] S.A.H. Mohsan, M.A. Khan, F. Noor, I. Ullah, M.H. Alsharif, Towards the unmanned
aerial vehicles (UAVs): a comprehensive review, Drones 6 (6) (2022) 147.

[2] I. Chandran, K. Vipin, Multi-uav networks for disaster monitoring: challenges and
opportunities from a network perspective, Drone Syst. Appl. 12 (2024) 1–28.

[3] B. Liu, W. Zhang, W. Chen, H. Huang, S. Guo, Online computation offloading and
traffic routing for uav swarms in edge-cloud computing, IEEE Trans. Veh. Technol.

69 (8) (2020) 8777–8791.

http://refhub.elsevier.com/S2214-2096(24)00133-5/bib7297A2ABAC8C0FA0E1FF1427A94B1CD7s1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bib7297A2ABAC8C0FA0E1FF1427A94B1CD7s1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bib3C92F630B89F9A876D8BCE1113F4EF67s1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bib3C92F630B89F9A876D8BCE1113F4EF67s1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bibE081AA68F6367570EB1E8795AAE56776s1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bibE081AA68F6367570EB1E8795AAE56776s1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bibE081AA68F6367570EB1E8795AAE56776s1

Vehicular Communications 50 (2024) 100858I. Chandran and K. Vipin

[4] T.X. Tran, D. Pompili, Joint task offloading and resource allocation for multi-server
mobile-edge computing networks, IEEE Trans. Veh. Technol. 68 (1) (2018) 856–868.

[5] S. Bi, Y.J. Zhang, Computation rate maximization for wireless powered mobile-edge
computing with binary computation offloading, IEEE Trans. Wirel. Commun. 17 (6)
(2018) 4177–4190.

[6] M.S. Hossain, C.I. Nwakanma, J.M. Lee, D.-S. Kim, Edge computational task offload-

ing scheme using reinforcement learning for iiot scenario, ICT Express 6 (4) (2020)
291–299.

[7] L. Huang, S. Bi, Y.-J.A. Zhang, Deep reinforcement learning for online computation
offloading in wireless powered mobile-edge computing networks, IEEE Trans. Mob.
Comput. 19 (11) (2019) 2581–2593.

[8] K. Zhang, Z. Yang, T. Başar, Decentralized multi-agent reinforcement learning with
networked agents: recent advances, Front. Inf. Technol. Electron. Eng. 22 (6) (2021)
802–814.

[9] J. Yan, S. Bi, Y.J.A. Zhang, Offloading and resource allocation with general task
graph in mobile edge computing: a deep reinforcement learning approach, IEEE
Trans. Wirel. Commun. 19 (8) (2020) 5404–5419.

[10] L. Huang, X. Feng, A. Feng, Y. Huang, L.P. Qian, Distributed deep learning-based
offloading for mobile edge computing networks, Mob. Netw. Appl. 27 (3) (2022)
1123–1130.

[11] Z. Chen, X. Wang, Decentralized computation offloading for multi-user mobile edge
computing: a deep reinforcement learning approach, EURASIP J. Wirel. Commun.
Netw. 2020 (1) (2020) 188.

[12] Z. Zhang, C. Li, S. Peng, X. Pei, A new task offloading algorithm in edge computing,
EURASIP J. Wirel. Commun. Netw. 2021 (1) (2021) 17.

[13] X. Li, Y. Qin, H. Zhou, Y. Cheng, Z. Zhang, Z. Ai, Intelligent rapid adaptive offloading
algorithm for computational services in dynamic Internet of things system, Sensors
19 (15) (2019) 3423.

[14] A. Sacco, F. Esposito, G. Marchetto, P. Montuschi, Sustainable task offloading in uav
networks via multi-agent reinforcement learning, IEEE Trans. Veh. Technol. 70 (5)
(2021) 5003–5015.

[15] N.T. Hoa, N.C. Luong, D. Le Van, D. Niyato, et al., Deep reinforcement learning
for multi-hop offloading in uav-assisted edge computing, IEEE Trans. Veh. Technol.
(2023).

[16] X. Chen, L. Jiao, W. Li, X. Fu, Efficient multi-user computation offloading for mobile-

edge cloud computing, IEEE/ACM Trans. Netw. 24 (5) (2015) 2795–2808.

[17] J. Ren, J. Haupt, A communication efficient hierarchical distributed optimization al-

gorithm for multi-agent reinforcement learning, in: Real-World Sequential Decision
Making Workshop at International Conference on Machine Learning, 2019.

[18] W. Suttle, Z. Yang, K. Zhang, Z. Wang, T. Başar, J. Liu, A multi-agent off-policy actor-

critic algorithm for distributed reinforcement learning, IFAC-PapersOnLine 53 (2)
(2020) 1549–1554.

[19] K. Zhang, Z. Yang, T. Başar, Multi-agent reinforcement learning: a selective overview
of theories and algorithms, in: Handbook of Reinforcement Learning and Control,
2021, pp. 321–384.

[20] Y. Xu, Y. Wang, J. Yang, Meta-heuristic search based model for task offloading and
time allocation in mobile edge computing, in: Proceedings of the 2020 6th Interna-

tional Conference on Computing and Artificial Intelligence, 2020, pp. 117–121.

[21] A. Sacco, F. Esposito, G. Marchetto, P. Montuschi, A self-learning strategy for task
offloading in uav networks, IEEE Trans. Veh. Technol. 71 (4) (2022) 4301–4311.

[22] M. Min, L. Xiao, Y. Chen, P. Cheng, D. Wu, W. Zhuang, Learning-based computation
offloading for iot devices with energy harvesting, IEEE Trans. Veh. Technol. 68 (2)
(2019) 1930–1941.

[23] K. Zhang, Z. Yang, T. Basar, Networked multi-agent reinforcement learning in contin-

uous spaces, in: 2018 IEEE Conference on Decision and Control (CDC), IEEE, 2018,
pp. 2771–2776.

[24] C. Qu, S. Mannor, H. Xu, Y. Qi, L. Song, J. Xiong, Value propagation for decentralized
networked deep multi-agent reinforcement learning, Adv. Neural Inf. Process. Syst.
32 (2019).

[25] R. Lowe, Y.I. Wu, A. Tamar, J. Harb, O. Pieter Abbeel, I. Mordatch, Multi-agent
actor-critic for mixed cooperative-competitive environments, Adv. Neural Inf. Pro-

cess. Syst. 30 (2017).

[26] S. Kar, J. Moura, H.V. Poor, Qd-learning: a collaborative distributed strategy for
multi-agent reinforcement learning through consensus, arXiv preprint, arXiv :1205 .
0047, 2012.

[27] K. Zhang, Z. Yang, H. Liu, T. Zhang, T. Basar, Fully decentralized multi-agent rein-

forcement learning with networked agents, in: International Conference on Machine
Learning, PMLR, 2018, pp. 5872–5881.

[28] M. De Benedetti, F. D’Urso, G. Fortino, F. Messina, G. Pappalardo, C. Santoro, A fault-

tolerant self-organizing flocking approach for uav aerial survey, J. Netw. Comput.
Appl. 96 (2017) 14–30.
9

http://refhub.elsevier.com/S2214-2096(24)00133-5/bib20D0616D086D27CED3B5BAD66A6D68A5s1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bib20D0616D086D27CED3B5BAD66A6D68A5s1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bib6BC646E400D1BA68C5482DB71E110E74s1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bib6BC646E400D1BA68C5482DB71E110E74s1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bib6BC646E400D1BA68C5482DB71E110E74s1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bib89BFA93495B02FACE2D0717D6E9E9D66s1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bib89BFA93495B02FACE2D0717D6E9E9D66s1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bib89BFA93495B02FACE2D0717D6E9E9D66s1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bib901B49AA9278110904F32E92ACD93ACCs1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bib901B49AA9278110904F32E92ACD93ACCs1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bib901B49AA9278110904F32E92ACD93ACCs1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bib6FCE5EEC6AC393D36972B8D975FC5D19s1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bib6FCE5EEC6AC393D36972B8D975FC5D19s1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bib6FCE5EEC6AC393D36972B8D975FC5D19s1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bib28DD9392B5FD6D670AC54A0E98C7717Ds1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bib28DD9392B5FD6D670AC54A0E98C7717Ds1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bib28DD9392B5FD6D670AC54A0E98C7717Ds1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bibD59F12CE8FC97EBF39CC9D021C418C4As1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bibD59F12CE8FC97EBF39CC9D021C418C4As1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bibD59F12CE8FC97EBF39CC9D021C418C4As1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bibCEDA649F6C5B12D67150923551C96DB1s1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bibCEDA649F6C5B12D67150923551C96DB1s1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bibCEDA649F6C5B12D67150923551C96DB1s1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bibEB765E68DE08803B2144799AB430F363s1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bibEB765E68DE08803B2144799AB430F363s1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bib25F7B703CA0988DD64A2B3F64B80EAA8s1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bib25F7B703CA0988DD64A2B3F64B80EAA8s1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bib25F7B703CA0988DD64A2B3F64B80EAA8s1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bib2EEAF2B8F0223270B460C3CCC8BC32F8s1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bib2EEAF2B8F0223270B460C3CCC8BC32F8s1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bib2EEAF2B8F0223270B460C3CCC8BC32F8s1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bib3256597B54BDD295276C821EBB8A52F9s1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bib3256597B54BDD295276C821EBB8A52F9s1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bib3256597B54BDD295276C821EBB8A52F9s1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bib350764D37B1E884A8055F271FB86A17Ds1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bib350764D37B1E884A8055F271FB86A17Ds1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bibBEDB4ED79D30286A0B19E1E1EBD97418s1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bibBEDB4ED79D30286A0B19E1E1EBD97418s1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bibBEDB4ED79D30286A0B19E1E1EBD97418s1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bibFB653D730AB8F0902442F436E032B923s1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bibFB653D730AB8F0902442F436E032B923s1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bibFB653D730AB8F0902442F436E032B923s1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bib00CCCDAB0FDB8970AB0FF5C0282127BBs1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bib00CCCDAB0FDB8970AB0FF5C0282127BBs1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bib00CCCDAB0FDB8970AB0FF5C0282127BBs1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bib406D88DC9F77745625131927D1C529C0s1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bib406D88DC9F77745625131927D1C529C0s1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bib406D88DC9F77745625131927D1C529C0s1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bib2F6AF708370278E2C32C6445A8B91C5Bs1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bib2F6AF708370278E2C32C6445A8B91C5Bs1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bibCE69FE2188F3CCF5223C67DBE6265B4Cs1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bibCE69FE2188F3CCF5223C67DBE6265B4Cs1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bibCE69FE2188F3CCF5223C67DBE6265B4Cs1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bibFB424EF914BAFCC3E3592D39F8FE5048s1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bibFB424EF914BAFCC3E3592D39F8FE5048s1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bibFB424EF914BAFCC3E3592D39F8FE5048s1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bib11EB714031E128D35CE97BA45952E737s1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bib11EB714031E128D35CE97BA45952E737s1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bib11EB714031E128D35CE97BA45952E737s1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bibD54DDBBF7C428D43DE33D5DF004E941As1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bibD54DDBBF7C428D43DE33D5DF004E941As1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bibD54DDBBF7C428D43DE33D5DF004E941As1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bibC363B5CA0248A5A0A9E870BF5D7D3C9Es1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bibC363B5CA0248A5A0A9E870BF5D7D3C9Es1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bibC363B5CA0248A5A0A9E870BF5D7D3C9Es1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bib767759821A037BEAFBD26127B238F1A2s1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bib767759821A037BEAFBD26127B238F1A2s1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bib767759821A037BEAFBD26127B238F1A2s1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bib046E8452384018A7BE8AA3C02332AE8Es1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bib046E8452384018A7BE8AA3C02332AE8Es1
http://refhub.elsevier.com/S2214-2096(24)00133-5/bib046E8452384018A7BE8AA3C02332AE8Es1

	Decentralized multi-hop data processing in UAV networks using MARL
	1 Introduction
	2 Background
	3 System model
	3.1 Mathematical formulation of UAV network dynamics
	3.1.1 Channel model
	3.1.2 Transmission rate
	3.1.3 Energy consumption
	3.1.4 Latency

	3.2 Proposed MARL algorithm formulation

	4 Performance evaluation
	4.1 Network setup
	4.2 Result analysis

	5 Conclusion and future work
	CRediT authorship contribution statement
	Funding
	Declaration of competing interest
	Data availability
	References

