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WHAT IS RECURSION?

https://abetterscientist.wordpress.com/

Many more: Factorial, Fibonacci seq., Towers of Hanoi, Merge sort, Quick sort, Binary search …

function search(currentDir):

if targetFile exists in currentDir:

return currentDir;

for each childDir in currentDir:

result = search(childDir) 

if result is not null: 

return result;

return null;
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LINEAR RECURSION
•A linear recursive function is a function
that makes at most one recursive call
each time it is invoked (as opposed to
one that would call itself multiple times
during its execution).

int sumArrayRecursive(int arr[], int n) {

// What is the base case?

//Recursive step:

return arr[0] + sumArrayRecursive(???,    ???); 

}

}

int main() {

int arr[] = {1, 2, 3, 4, 5};

int n = sizeof(arr) / sizeof(arr[0]); 

int sum = sumArrayRecursive(arr, n);

cout << "Sum of array elements: " << sum << endl;

return 0;

}

int gcd(int a, int b) {

if (b == 0) {

return a; 

} else {

return gcd(b, a % b); 

}

}

Euclidean Algorithm (Recursive)



TAIL RECURSION: REVERSING AN ARRAY

• Tail recursion occurs when a linearly recursive method makes its recursive call as its
last step.

• Such methods can be easily converted to non-recursive methods (which saves on some
resources).

void reverseArray(int arr[], int start, int end) 

{ 

if (start >= end) { //reached ???

return; 

} 

swap(arr[start], arr[end]); 

reverseArray(arr, start + 1, end - 1); 

}

void reverseArray(int arr[], int size) { 

int start = 0; 

int end = size - 1; 

while (start < end) {

swap(arr[start], arr[end]); 

start++; 

end--; 

}

}



WHAT ABOUT FACTORIAL?

int factorial(int n) {

if (n == 0) {

return 1; 

} else {

return ;

}

}

Is it tail recursive?

int tail_factorial(int n, int acc) {

if (n == 0) {

return acc; 

} else {

return tail_factorial(n - 1, n * acc); 

}

}

int factorial(int n) {

return tail_factorial(n, 1); 

} What about this?

int factorial_iterative(int n) {int prod = 1; for (int i = 1; i <= n; ++i) { prod *= i;} return prod;}



BINARY RECURSION

• What is binary recursion?

Algorithm BinarySum(A, i, n):

Input: An array A and integers i and n

Output: The sum of the n integers in A starting at index i

if n == 1 then

return A[i ];

return

BinarySum(A, i, n/ 2) + BinarySum(A, i + n/ 2, n/ 2)

Let us see the recursion trace… Used heavily in merging and tree traversals…

void towerOfHanoi(int n, char source, char 

dest, char aux) {

if (n == 1) {

cout << "Move disk 1 from " <<  

source << " to " << dest << endl;

return;

}

towerOfHanoi(n - 1, source, aux, dest); 

cout << "Move disk " << n << " from " 

<< source << " to " << dest << endl;

towerOfHanoi(n - 1, aux, dest, source);

}



COMPUTING FIBONACCI NUMBERS: BETTER WAY…

What is the type of this rec.?Is binary recursion better here?

int fibonacci(int n) {

if (n <= 1) {

return n;

}

int first = 0;

int second = 1;

int result;

for (int i = 2; i <= n; i++) {

result = first + second;

first = second;

second = result;

}

return result;

}



WHAT IS ALGORITHM COMPLEXITY?
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(A metaphor: searching car keys in your home)

✓



FEW MORE COMPLEXITY EXAMPLES…

Exponential: 2n Quadratic (greedy heuristics): n2
Linear: n

Constant: 1

Mr X?

Logarithmic: log(n) Log-linear: n.log(n)

TSP



TASK FOR YOU…

You want to look for a word in a dictionary that has every word
sorted alphabetically. How many algorithms are there and which one
would you prefer?



WHY IS IT SO IMPORTANT?
Problem Statement:

Problem Name: "Maximum Subarray
Sum"

Input: An array of integers.

Output: maximum sum.

Constraints:

• Time Limit: 1 second

• Memory Limit: 256 MB

• 1 <= Array Size <= 10^6

• -10^9 <= Array Element <= 10^9
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Efficient solution: Kadane's Algorithm using DP (Ignore –ve subarray sum): Complexity is ???

Input :arr[]= {100, 200, 300, 400}, k = 2   Output : ???

for (int i = 0; i < n; i++) {

for (int j = i; j < n; j++) {

int currentSum = 0;

for (int k = i; k <= j; k++) {

currentSum += arr[k];

}

if (currentSum > maxSum) {

maxSum = currentSum;

}

}

}

Complexity?

for(int i = 0; i < n; i++) {

int currentSum = 0;

for(int j = i; j < n; j++) {

currentSum += arr[j];  

if (currentSum>maxSum){

maxSum = currentSum;

}

}

}

Complexity?

for (int i = 1; i < n; i++) {

currentSum=max(arr[i], currentSum + arr[i]);

maxSum = max(maxSum, currentSum);

}

Metaphor: Daily Budget and Spending



FUNCTIONS FOR ALGORITHM ANALYSIS

Input size(n)
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O(1)

(Constant Function)

Ex.s: Array indexing, Vari

able assignment, Basic arit

hmetic operations, …

(Seating in the class everyday)

Input size(n)
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O(n)

(Linear Function)

Ex.s: Searching in unsorted

array, Printing all element

s of a list, …

(Reading chapters of book)

Input size(n)
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(Logarithmic Function)

Ex.s: Finding a word in a d

ictionary, Treasure hunt, et

c…

(Climbing a ladder quickly)

Input size(n)
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(Exponential Function)

Ex.s: Fibonacci sequence, T

owers of Hanoi, Generatin

g all subsets of set, etc…

(Population growth)

2n

log2(n)



COMPLEXITY EXAMPLES FROM REAL LIFE

Mon WedTues Thurs

… (Ex.1)
1km 1km1km1km

Mon

1km

Tues

2kms

Wed

3kms
…

(Ex.2)

½ (nXn) = n2/2

½ (1X1) = 1/2

… n

n/2+ n(n+1)/2, for n>=1

Que: 1 + 4 + 9 + 16 + 25 +…n {[n(n+1)(2n+1)]/6}cubic

• Total distance over time? (linear)

• Per day effort? (constant)

• Total distance over time? (quadratic) • Per day effort? (linear)



TASKS FOR YOU…COMPLEXITY?
function isEvenOrOdd(n) {

if (n%2 == 0)

return even;

else

return odd;
} (printing out all the elements)

list<int> numbers {1, 2, 3, 4};

for(int number : numbers) 

{ 

cout << number <<", "; 

} 

int partition(int arr[], int low, int high) { int pivot=arr[high]; 

int i = (low - 1); 

for (int j = low; j <= high - 1; j++) {  

if (arr[j] < pivot) { i++; swap(&arr[i], &arr[j]); } } 

swap(&arr[i + 1], &arr[high]); return (i + 1); 

}

int binarySearch(int array[], int x, 

int low, int high) 

{

while (low <= high) 

{ 

int mid = low + (high - low) / 2;

if (array[mid] == x) return mid; 

if (array[mid] < x) 

low = mid +1; 

else 

high = mid - 1; 

} 

return -1; 

}



POLYNOMIAL FUNCTIONS AND LOG-LOG PLOT

(In this log-log graph, the slope of the line
corresponds to the growth rate)

No of multiplications:
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Interestingly, all the functions that we have listed are
part of large class of functions called, polynomials:

g(n) = a0 + a1n + a2n
2 + a3n

3 + ...+ adn
d

What is d?

-Power law relations become linear.

y = k.xn (y: dependent and x is independent)

log(y) = log(k) + n.log(x), where n is the slope

and log(k) is the intercept.
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GROWTH RATE OF AN ALGORITHM
-It describes the rate at which the algorithm's resource requirements (time or memory)
grow relative to the input size.

f(n)=n.log(n)

logf(n)=

log(nlogn)

logf(n)=

logn+log(logn)

logf(n)=

mlogn+C

linear function?

f(n) = n2

logf(n) = log(n2)

logf(n) = 2.log(n)

slope

f(n)=an logf(n)=logan

logf(n)=n.log(a)

Logarithm depends on n, 

not on log(n)

[log-log plot with growth rates (running times)as slopes]



BEST CASE, WORST CASE, AVERAGE CASE

A B C D E

Find A: how many

comparisons?
O(1)

Find E: how many

comparisons?

O(n)

Middle: how many

comparisons?

(1+2+3+…n)/n (n(n+1)/2)/n (n+1)/2 ≈ n/2 Linear fun of n (ignoring ½)

O(n)

Lower bound

Upper bound

Typical performance

• Why worst case is important and Average case is most difficult to compute?

Natural measure of “goodness”



EMPIRICAL ANALYSIS: COMPLEMENT TO BIG-O
void bubbleSort(int arr[], int n) {

for (int i = 0; i < n-1; i++) {

for (int j = 0; j < n-i-1; j++) {

if (arr[j] > arr[j+1]) {

int temp = arr[j];

arr[j] = arr[j+1];

arr[j+1] = temp;

}

}

}

}

… (with a main function calling it)

Flat profile: 

% cumulative self self total           

time seconds seconds calls ms ms name    

95.00      1.90     1.90        1  1900  1900 bubbleSort

5.00 2.00     0.10                             main

gprof Call graph:

caller

callee

(This week’s Lab: Lab 5)

Question: How do you now verify the quadratic complexity of this algorithm? What are the challenges?
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This week’s Lab

Inside main()

recursive



CO
N

TI
N

U
ED

…

La
b

 n
o
:5

















RECAP: BIG-O

f (n) is O(g(n))

T

I

M

E

There exists c > 0 and n0 such

that f(n) ≤ cg(n) whenever n ≥ n0.

• Why is it called tight upper bound?

• What is the relation between Big-O and growth 

rate?

• How to choose an appropriate combination of c 

and n0 out of many possible ones?



RECURSIVE FUNCTIONS: RECURRENCE RELATION (EX1)

void fun(int n) {

if (n > 0) 

{

printf(“%d”, n);

fun(n-1);

}

}

Int main() {

int x = 4;

fun(x);

return 0;

}

• A recurrence relation is a way to define a function or

sequence in terms of itself.

• Let us solve it?

𝑇 𝑛 = ቊ
𝑐, 𝑛 ≤ 0

𝑇 𝑛 − 1 + 𝑘 , n > 0

T(n-1) = T(n-1-1) + k

 T(n) = T(n-2) + k + k  = T(n-2) + 2k

…

 T(n) = T(n-i) + i.k n-i = 0  T(0) + n.k c + nk

O(n)



EXAMPLE 2

T(n) = 2 T(n/2) + n Where, T(1) = 1

T(n/2) = 2 T(n/4) + (n/2) 

T(n) = 2 {2.T(n/4) + (n/2)} + n  = 4 T(n/4) + 2.n 

T(n/4) = 2.T(n/8) + (n/4) 

T(n) = 4. {2.T(n/8) + (n/4)} + 2.n  = 8.T(n/8) + 3.n 

T(n) = 2i.T(n/2i) + i.n

Assuming n/2i = 1

 n = 2i

T(n) = n.T(1) + log2n.n

T(n) = n + nlog2n

O(nlog2n)

Log-linear



BIG-O RULES
1. If an algorithm performs a certain sequence of

steps f(N)times for a function f, it takes O(f(N))
steps.

2. If an algorithm performs an operation that takes
f(N) steps and then performs another operation
that takes g(N) steps for function f and g, the
algorithm’s total performance is ???.

This algorithm examines each of the N items once,

so it’s performance ???.

The total runtime of the algorithm is ???.

int findBiggestNumber(int arr[], int size) {

int biggest = arr[0]; 

for (int i = 1; i < size; i++) {

if (arr[i] > biggest) {

biggest = arr[i];

}

}

return biggest;

}

int findBiggestNumber(int arr[], int size) {

int biggest = arr[0];  // ?

for (int i = 1; i < size; i++) { //?

if (arr[i] > biggest) {

biggest = arr[i];

}

}

return biggest; //?

}



CONTINUED…

3. If an algorithm takes O (f(N) + g(N)) steps and
the function f(N) is bigger than g(N),
algorithm’s performance can be simplified to
O (f(N)).

findBiggestNumber algorithm has O(N+

2) runtime. When N grows very large, the

function N is larger than our constant value 2,

so algorithm’s runtime can be simplified to ???.

4. If an algorithm performs an operation that

takes f(N) steps, and every step performs

another operation that takes g(N) steps,

algorithm’s total performance is ???. O(n2)

int findBiggestNumber(int arr[], int size) {

int biggest = arr[0];  // O(1)

for (int i = 1; i < size; i++) { //O(n)

if (arr[i] > biggest) {

biggest = arr[i];

}

}

return biggest; //O(1)

}

bool containsDuplicates(int arr[], int n) {

for (int i = 0; i < n; i++) {

for (int j = i + 1; j < n; j++) {

if (arr[i] == arr[j]) {

return true; // duplicate found

}  }  }

return false; }



BIG-O AND GROWTH RATE

•The big-Oh notation gives an upper bound on the
growth rate of a function without capturing
hardware details.

•The statement “f(n) is O(g(n))” means that the
growth rate of f(n) is no more than the growth rate
of g(n).

•We can use the big-O notation to rank functions
according to their growth rate.

f(n) is 

O(g(n))

g(n) is O(f(n))

g(n) grows more Yes No

f(n) grows more No Yes

Same growth Yes Yes

•O(1) – constant time, the time is
independent of n, e.g. array look-up

•O(log n) – logarithmic time, e.g. binary
search

•O(n) – linear time, e.g. linear search

•O(nlog n) – e.g. efficient sorting
algorithms

•O(n2) – quadratic time, e.g. selection sort

•O(nk) – polynomial (where k is some
constant)

•O(2n) – exponential time, very slow!

•O(1) < O(log n) < O(n) < O(n * log n) <
O(n2) < O(n3) < O(2n)



STRICT UPPER BOUND: SMALL-O
• What about small o ? (Upper bound that is not tight)

• If f(n) = o(g(n)), it means f(n) grows strictly slower

than g(n).

not a tight bound but an overestimate

0 ≤ 𝑓 𝑛 < 𝑐 ⋅ g 𝑛 lim
𝑛→∞

𝑓 𝑛

𝑔 𝑛
= 0Or,

Let f(n) = nlogn, and g(n) = n2 Prove that f(n) is o(g(n))

lim
𝑛→∞

𝑓 𝑛

𝑔 𝑛
lim
𝑛→∞

nlogn

n2
lim
𝑛→∞

logn

n

L-Hospital Rule lim
𝑛→∞

d(logn)/dn

d(n)/dn
lim
𝑛→∞

1/n

1
= 0

Hence, nlogn = o(n2)

• Used in Asymptotic proofs.

Prove that: n = o(n2)

lim
𝑛→∞

𝑛

𝑛2 lim
𝑛→∞

1

n
= 0

Hence, n = o(n2)

Prove that: n2 ≠ o(n2)

lim
𝑛→∞

𝑛2

𝑛2
= 1 ≠ 0

Hence, n2 ≠ o(n2) Rather, n2 = O(n2)

Big-O allows equality, but small-o requires

strict growth separation.



BEST CASE BIG  AND AVERAGE CASE BIG 

Big-Theta Notation ()

f(n) is (g(n)) if there are constants c1 > 0 and c2 > 0 and an
integer constant n0  1 such that c1.g(n)  f(n)  c2.g(n) for n  n0

Let, f(n) = 3n.logn + 2n

Ω(nlog n)

Justification: 3n.logn+2n ≥ 3n.logn, for n ≥ 2

Big-Omega Notation ()

•Just like Bio-O provides asymptotic upper-bound, Big-
provides asymptotic lower-bound on the running time.

•f(n) is (g(n)) if there exists a constant c > 0 and an
integer constant n0  1 such that f(n)  c.g(n) for all n  n0

f(n) is Θ(g(n)) , if: f(n) is both O(g(n)) and Ω(g(n))

3nlogn+4n+5logn is Θ(nlog n) 3nlogn  3nlogn+4n+5logn  (3+4+5) nlogn for n  2
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f(n) = Ω(g(n))

f(n) = Θ(g(n))
T

I

M

E

Que. For You: Linear search, Binary search? O(n), (1), (n/2) O(logn), (1), (logn) 



EXAMPLES OF BIG- AND BIG-

• f(n) is (g(n)) if it is (n2) and O(n2). We have already seen the former, for the latter recall that
f(n) is O(g(n)) if there is a constant c > 0 and an integer constant n0  1 such that f(n) < c.g(n)
for n  n0

• Let c = 5 and n0 = 1

• 5n2 is (n2)

• f(n) is (g(n)) if there is a constant c > 0 and an integer constant n0  1 such that f(n)  c.g(n) for
n  n0

• For, say c = 1 and n0 = 1 5.12  1.1 True.

• 5n2 is (n)

• f(n) is (g(n)) if there is a constant c > 0 and an integer constant n0  1 such that f(n)  c.g(n) for
n  n0

• For, say c = 5 and n0 = 1 5.12  5.12 True.

• 5n2 is (n2)



PREFIX AVERAGE EXAMPLE 

•The i-th prefix average of an array X is
average of the first (i + 1) elements of X:

A[i] = (X[0] + X[1] + … + X[i])/(i+1)

0
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35

1 2 3 4 5 6 7

X

A

Algorithm prefixAverages1(X, n)

Input array X of n integers

Output array A of prefix averages of X

Anew array of n integers n

for i  0 to n  1 do n

s  0 n

for j  0 to i do     1 + 2 + …+ n

s  s + X[j] 1 + 2 + …+ n

A[i]  s / (i + 1) n

return A 1
O(n2)

Algorithm prefixAverages2(X, n)

Input array X of n integers

Output array A of prefix averages of X

A  new array of n integers n

s  0 1

for i  0 to n  1 do n

s  s + X[i] n

A[i]  s / (i + 1) n

return A 1

O(n)

Applications: 

Eco (Mutual 

Fund Avgs.)



THANK YOU!

Next Class: Common Data structures (Stacks, Queues, Deques etc.)


