
CS F211: DATA STRUCTURES & ALGORITHMS
(2ND SEMESTER 2024-25)

Vectors, Lists, Amortization, & Sequences

Chittaranjan Hota, PhD

Senior Professor, Computer Sc.

BITS-Pilani Hyderabad Campus

hota[AT]hyderabad.bits-pilani.ac.in

SIMPLE ARRAY-BASED IMPLEMENTATION

Use an array A of size N

A variable n keeps track of the size of the array list
(number of elements stored)

How will you implement?

at (i)

set (i, o)

insert (i, o)

erase (i)

What would be the performance of a vector

realized by an array?

Algorithm insert(i,o): Algorithm erase(i):

19

19

9

9

9

9

COMPARISON OF STRATEGIES: AMORTIZATION (A
DESIGN PATTERN)

•We compare the incremental strategy and the doubling strategy by
analyzing the total time T(n) needed to perform a series of n insert(o)
operations.

•We assume that we start with an empty stack represented by an array
of size 1

•We call amortized time of an insert operation the average time taken
by an insert over the series of operations, i.e., T(n)/n

•We replace the array k = n/c times

•The total time T(n) of a series of n insert operations is proportional to

n+c+2c+ 3c + 4c +…+ kc = n + c(1 + 2 + 3 +…+ k) = n + ck(k + 1)/2

Since c is a constant, T(n) is O(n + k2), i.e., O(n2)

The amortized time of an insert operation is O(n)

• We replace the array k = log2

n times

• The total time T(n) of a series of

n insert operations is

proportional to

n + 1 + 2 + 4 + 8 + …+ 2k

= n + 2k + 1 - 1 = 3n - 1

• T(n) is O(n)

• The amortized time of an insert

operation is O(1)

I

N

C

R

E

M

E

N

T

A

L

Doubling Strategy

(Increase the size by a constant c)

ACCOUNTING METHOD
•"Amortize" is a fancy verb used in finance that refers to paying off the
cost of something gradually. With dynamic arrays, every expensive
append where we have to grow the array "buys" us many cheap appends
in the future. Conceptually, we can spread the cost of the expensive
append over all those cheap appends.

•The cost of doing m appends is m (since we're appending every
item), plus the cost of any doubling when the dynamic array needs to
grow. How much does the doubling cost?

•Say we start off with space for just one item. Then the first doubling costs
1. The second costs 2. The third costs 4. The fourth costs 8. so …on.

•1+2+4+8+...+ m/2 +m  m + m/2 + m/4 + …+ 4 + 2 + 1
…

We see that the whole right side ends up being another square of size m, making the sum m + m = 2m.

• So when we do m appends, the appends themselves cost m, and the doubling costs 2m. Put together, we've got a cost

of 3m, which is O(m). So on an average, each individual append is O(1). m appends cost us O(m).

m

m 𝑚

2

m
𝑚

2

𝑚

4

m
𝑚

2

𝑚

4

𝑚

8

STL VECTORS WITH
ALGORITHMS

POSITION ADT & ITERATORS
•The Position ADT models the notion of place within a

data structure where a single object is stored.

•It gives a unified view of diverse ways of storing

data, such as

• a cell of an array

• a node of a linked list

•Just one method:

• object p.element(): returns the element at position

• In C++ it is convenient to implement this as *p

A List container: Index of an element may

change but not the position/ memory

location.

Although a position is a useful object, it would be more useful still to be able to navigate through the

container, for example, by advancing to the next position in the container. Such an object is called an

iterator.

CONTAINERS AND ITERATORS
•What is a Container?

• Can you give some examples?

•Various notions of iterator:

• (standard) iterator: allows read-write

access to elements

• const iterator: provides read-only access to

elements

• bidirectional iterator: supports both ++p

and --p

• random-access iterator: supports both p+i

and p-i

Let C be a container and p be an iterator for

C:

How will you iterate through the container?

Example: (with an STL vector)

typedef vector<int>::iterator Iterator;

int sum = 0;

for (Iterator p = V.begin(); p != V.end(); ++p)

sum += *p;

return sum;

STL LISTS IN C++

program source: https://www.geeksforgeeks.org/

#include <list>

using std::list;

list<int>myList;

INDEX VS POSITION: MORE EXAMPLES
U

si
ng

 I
nd

e
x
in

g
 O

p
e
ra

to
r

U
si
ng

 I
te

ra
to

rs

SEQUENCE ADT
•The Sequence ADT generalizes the

Vector and List ADTs.

•Elements are accessed by:

- Index, or Position

0 1 2 3

THANK YOU!

Next class: Trees, Priority queues, …

