
CS F211: DATA STRUCTURES & ALGORITHMS
(2ND SEMESTER 2024-25)

PRIORITY QUEUES AND HEAPS

Chittaranjan Hota, PhD

Senior Professor, Computer Sc.

BITS-Pilani Hyderabad Campus

hota[AT]hyderabad.bits-pilani.ac.in

PRIORITY QUEUES: WHAT ARE THESE?
• Arrays, Linked lists: Explicit Linear ordering

• Priority queues: Implicit Linear ordering

• How did you decide BITS campus to choose
from several institutions?

Priority may also depend on multiple variables:

- Two values specify a priority: (a, b)

- A pair (a, b) has higher priority than (c, d) if:

- a < c, or

- a = c and b < d

(Prioritizing Medical Attention)

- For example, (5, 19), (13, 1), (13, 24), and (15, 0) all have higher priority than (15, 7)

Lexicographic order

ST
L

PR
IO

RI
TY

 Q
U

EU
E

MACHINE SCHEDULING: APPLICATION OF HEAPS
- 3 machines and 7 jobs

- Task/ job times are [6, 2, 3, 5, 10, 7, 14]

- Possible schedule

A

B

C

6

2

3

7

13

13

21 What is the finish time?

Are there any better

ways of doing this?

LONGEST PROCESSING TIME FIRST

Jobs are scheduled in the order

 14, 10, 7, 6, 5, 3, 2

Each job is scheduled on the machine on which it finishes earliest.

A

B

C

14

10

7 13

15

16

16

<
--

--
--

--
M

a
c
h

in
e

s

Time ----------->

What is the finish
time?

Lab 10 next week

BUILDING HEAPS USING C++ STL

#include <iostream>

#include <vector>

#include <algorithm>

int main() {

std::vector<int> vec = {3, 1, 4, 1, 5, 9, 2};

std::make_heap(vec.begin(), vec.end());

vec.push_back(8);

std::push_heap(vec.begin(), vec.end());

std::cout << "Max Heap after pushing 8:";

for (int i : vec) {

std::cout << i << " ";

}

std::pop_heap(vec.begin(), vec.end());

vec.pop_back();

std::cout << "Max Heap after

popping the largest element: ";

for (int i : vec) {

std::cout << i << " ";

}

std::cout << std::endl;

return 0;

}

Min Heap: make_heap(minHeap.begin(), minHeap.end(), greater<int>());

Feature priority_queue(STL) make_heap(STL)

Impleme

ntation

Uses a binary heap

internally

Converts a vector

into heap structure

Insertion push() adds an

element efficiently

No direct insertion:

use push_back()

followed by

push_heap()

Deletion pop() pop_heap()

followed by

pop_heap()

Default

type

Max Heap Max Heap

When

to use?

Frequent insertion

and removal

One time heap

structure

OTHER STL IN C++

COMPLEXITY OF HEAP SORT
- Building the Heap: O(n)

Work done at each level:

- The heapify operation at a node at level i : O(h-i), where h is the height of heap.

(because the node might need to swap its way down to the bottom of the heap)

Total work done: ෌
𝑖=0

ℎ
Number of Nodes at level i × O(h − i)

= ෎

𝑖=0

ℎ

2𝑖 × O h − i = 𝑂(෍
𝑖=0

ℎ

2𝑖(h − i)) = 𝑂(෌
k=0

ℎ
2h−k. k)

As, 2h-k = 2h / 2k and 2h <= n, the sum can be rewritten as: 𝑂(𝑛.෍
k=0

ℎ
𝑘

2𝑘
)

Constant 2

O(n)

Extracting elements: O(nlogn)

Extracting root: O(1), Heapify the remaining heap: logn

Repeated n times: nlogn

max (n, nlogn) = O(nlogn)

IN-PLACE HEAP SORT
function heapSort(arr) {

n = length(arr)

for (i = n/2 – 1, i>=0; i--)

heapify(arr, n, i);

for (i = n – 1, i>=0, i--)

swap(arr[0], arr[i]);

heapify(arr, i, 0);

}

function heapify(arr, n, i) {

largest = i ;

left = 2 * i + 1;

right = 2 * i + 2;

if (left < n && arr[left] > arr[largest])

largest = left;

if (right < n && arr[right] > arr[largest])

largest = right;

if largest != i:

swap(arr[i], arr[largest]);

Recursively heapify the affected sub-tree

heapify(arr, n, largest);

}

Build a Max-heap

Extract elements

THANK YOU!

Next Class: Maps, Dictionaries, Hash tables…

