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Artificial Neural Networks

John Joseph HopfieldGeoffrey Everest Hinton

Who is Godfather of AI?



ANNs: Motivating Examples

Image source: https://towardsdatascience.com/

(Russia-Ukrain War: Ukrainians used ANNs to
combine ground-level photos, drone video
footage and satellite imagery to enhance War
Intelligence)



‘The machine did it coldly’: Israel used AI to identify 37,000 Hamas targets: The

Lavender, The Gospel.



Source: https://www.ri.cmu.edu/



Pre-Fusion Spike Protein

https://proteopedia.org/ SARS-CoV-2 Alphafold 2



Learning Rewires the Brain

How many Neurons in a human brain?

Neurons?

An electrical signal shooting down a nerve cell and then off to others in the brain. Learning strengthens the paths that these signals
take, essentially "wiring" certain common paths through the brain.

Image Source: https://www.snexplores.org/ (imagination)

https://www.snexplores.org/


A Nerve Cell: Neuron

What are their computational abstractions in an Artificial Neural Network?

(Img. Source: https://bio.libretexts.org/)



Perceptron: Modelling the Nerve cell 

Frank Rosenblatt at IBM 704 (Electronic
profile analyzing computer): a precursor to
the perceptron, 1958.

(Image source: https://news.cornell.edu)

1943



Perceptron: An Example 
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What function this neuron computes?

g(x1,x2, …, xn) = g(x) =



Normalizing thresholds
• Why do we need Normalization?
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Normalized examples
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Perceptron as a Decision Surface

(A 2-dimensional space)

• Can it solve Non-linear classification problems?

AND OR

• What type of Classifier?

XOR?



Activation Functions in a Perceptron
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= 0, Otherwise 
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(Step Function)

y (x) = 1,       if > 0

= 0, for equal to 0  

-𝜽X1   +

= -1, for less than 0  

(Sign Function)

What about other activation functions like Sigmoid ?   Multi-layer Perceptron
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Perceptron Training Example

An example: A perceptron updating its linear boundary as more
training examples are added. (Image Source: Wiki)

Gradient Descent: 
changing the 
weight a small 
amount decreases 
the training error



Perceptron Training Algorithm

Algorithm: Perceptron Learning Algorithm

P  inputs with label +

N  inputs with label –

Initialize w  Random value;

while (!convergence) do

Pick random x ∈ P ⋃ N;

if (x ∈ P && w.x <0) then

w = w + x;

endif; 

if (x ∈ N && w.x ≥ 0) then

w = w - x;

endif; 

endwhile;

// Algorithm converges when all the
inputs are classified correctly.

Image Source: PRML, Bishop



Perceptron Training Rule

wi  wi +    wi (t - o) xi

Why should this update rule converge toward successful
weight values?

If training data is linearly separable and is sufficiently small.

Let us see this through an example:

When all ( , (t-o) and xi) are
positive, wi will increase and vice
versa:

xi = 0.8,    = 0.1, t = 1, o = -1:

 wi = 0.1(1-(-1))0.8 = 0.16

If t = -1, o = 1, what will happen?

Where,

•t = target value

•o = perceptron output

• is a small constant (e.g, 0.1) called the learning rate. 

It updates the weights only when the predicted class is incorrect. The updates are
based on whether the example is misclassified (binary classification).



Run through the algorithm: AND

(Training Set)
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x1 = 1, x2 = 1: ?

x1 = 1, x2 = 0: -0.9*1 + 0.6*1 + 0.2*0 =  -0.3  0    OK

x1 = 0, x2 = 1: -0.9*1 + 0.6*0 + 0.2*1 =  -0.7  0    OK

x1 = 0, x2 = 0: -0.9*1 + 0.6*0 + 0.2*0 =  -0.9  0    OK

New Weights
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Continued…



1 x
2
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x1 = 1, x2 = 1: -2.9*1 + 0.6*1 + 0.2*1 =  -2.1  0 WRONG

x1 = 1, x2 = 0: -2.9*1 + 0.6*1 + 0.2*0 =  -2.3  0  OK

x1 = 0, x2 = 1: -2.9*1 + 0.6*0 + 0.2*1 =  -2.7  0 OK

x1 = 0, x2 = 0: -2.9*1 + 0.6*0 + 0.2*0 =  -2.9  0 OK

w0 =  -2.9 + 1 =   -1.9

w1 =   0.6 + 1 =    1.6

w2 =   0.2 + 1 =    1.2

New Weights



1 x
2

x
1

-1.9
1.6

1.2

x1 = 1, x2 = 1: -1.9*1 + 1.6*1 + 1.2*1 =   0.9  1 OK

x1 = 1, x2 = 0: -1.9*1 + 1.6*1 + 1.2*0 =  -0.3  0 OK

x1 = 0, x2 = 1: -1.9*1 + 1.6*0 + 1.2*1 =  -0.7  0 OK

x1 = 0, x2 = 0: -1.9*1 + 1.6*0 + 1.2*0 =  -1.9  0 OK

Convergence Reached. Halt! w0 = -1.9, w1 = 1.6, w2 = 1.2



Gradient Descent and the Delta Rule

• If the training examples are NOT linearly separable (which the
Perceptron rule cannot handle), the Delta rule converges towards a
best-fit approximation to the target concept.

• The key-idea behind the delta rule is to use Gradient descent, a basis
for Back-propagation algorithm.

• Delta rule is best understood by considering an un-thresholded
Perceptron, i.e. a linear unit without threshold (or activation function).

• Let the linear unit be characterized by: o = w0 + w1x1 + w2x2 + … + wnxn

• Let us learn wi’s that minimize the squared error:

ADALINE: adaptive linear neural network based on MSE. Or Least mean square (LMS) Widrow Hoff

It updates the weights even if the predicted value is close to the correct one but not exactly
right. The adjustment is proportional to the error, making it suitable for continuous outputs.



Visualizing Gradient Descent: Recap

w0 and w1: The two weights of a linear unit and E is the error. 

Parabolic 
(Convex) 
with a single 
global 
minimum.



Derivation of Gradient Descent: Recap

• How can we calculate the direction of steepest descent along the error
surface?

• Gradient:

• When interpreted as a vector in weight space, the gradient specifies
the direction that produces the steepest increase in E .

• The negative of this vector therefore gives the direction of steepest
decrease.

• The training rule: Where:

(1)

(2)

Substituting (2) in (1):



Gradient Descent & Stochastic Gradient Descent

1. Initialize each wi to some small random value

2. Until the termination condition is met {

1. Initialize each wi to 0

2. For each training example do {

1. Input the instance to the Linear unit and compute output ‘o’

2. For each Linear unit weight wi do

3. }

3. For each Linear unit weight wi do {

4. }

3.   }

GD: the error is summed over all examples before updating weights. It might miss global minima when multiple
local minima are present. In SGD/Incremental GD, weights are updated upon examining each training example.

X

Alternatively, SGD computes ‘E’ for each training ex:



Inadequacy of Perceptron

• Many simple problems are NOT linearly separable.
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However, you can compute XOR by introducing a new,
hidden unit as shown in the left.
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How to build such a multi-layer network?

• Output is in the form of binary (0 or 1), NOT in the
form of continuous values or probabilities.

• No memory and hence treat each input
independently. Hence, limited ability to understand
sequential or temporal patterns in data.

?

Every classification problem has a Perceptron solution if
enough hidden layers are used.

Minsky & Papert’s paper: Pretty much killed ANN research in 1970. Rebirth in 1980: faster
parallel computers, newer algorithms (BPN,…), newer architectures (Hopfield nets).



Recap: A Perceptron 
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Hidden units in a Multi-layer Perceptron (MLP)

- The addition of hidden units allows the network to develop
complex feature detectors (i.e., internal representations)

- e.g., OCR
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What does a hidden layer hide?

No. of nodes in a layer and no. of layers? Expt. & tuning. Nodes too few: can’t learn, Too many: poor generalization



Decision Surface in a Multilayer Network: An Ex. 

Image source: Tom Mitchell’s text

Image source: Tom Mitchell's Text

Output: vowel sound occurring in the context “h__d”

Input to the Network: two features from spectral analysis of a spoken sound



ALVINN: An Autonomous Land Vehicle In a Neural Network

Source: https://www.ri.cmu.edu/ (1989: 3-layer Network)

An application of a Backpropagation Neural Network in smart driving



An Example 3-layer Perceptron

hidden units

Hidden Units: Sigmoid, Tanh, ReLU etc…

𝑦 =softmax(z), where 𝑧 = 𝑊Tℎ+𝑏
For a multiclass classification.

z

b

i

n

a

r

y

What is Sparse Connectivity and what are its’ Pros and Cons? Leaving out some links.



Activation Function: Sigmoid

During backpropagation, the
network might experience:

Vanishing Gradient

Where should you worry much? Shallow or Deep NNs?



• The hyperbolic tangent (tanh) activation function is another
commonly used non-linear activation function in neural networks.

• The tanh function squashes the input values to the range [-1, 1]. It is
similar to the sigmoid function, but its output is zero-centered,
meaning that its output is centered around zero, unlike the sigmoid
function which outputs values between 0 and 1.

Activation Function: Tanh

Does it suffer from Vanishing gradient problem? 

Used in RNNs,
and LSTMs…



Activation Functions: ReLU

Does it suffer from Vanishing gradient problem? 



Vanishing Gradient in MLPs/BPNs

Sigmoid function/ Logistic Curve

(z) = 1/1+e-z

Tanh: Tangent Hyperbolic

vanishingvanishing vanishing vanishing

Rectified Linear Unit: ReLU

derivative

Leaky ReLU(z) = 0.01z, z < 0
= z, z >= 0

Non-zero

Approx. Arbitrary Complex fun

Non-linear boundary



Gradient Descent for Sigmoid Unit

But we know:



Backpropagation Training Algorithm (BPN)

• Initialize weights (typically random!)

• Keep doing epochs

• For each example ‘e’ in the training set do

• forward pass to compute

• O = neural-net-output (network, e)

• miss = (T-O) at each output unit

• backward pass to calculate deltas to
weights

• update all weights

• end

• until tuning set error stops improving



Error Backpropagation

• First calculate error of output units and use this to change the
top layer of weights.

output

hidden

input

Current output: oj=0.2

Correct output: tj=1.0

Error δj = oj(1–oj)(tj–oj)

0.2(1–0.2)(1–0.2)=0.128

Update weights into j

ijji ow 



Error Backpropagation continued…

• Next calculate error for hidden units based on errors on the
output units it feeds into.

output

hidden

input


k

kjkjjj woo  )1(



Error Backpropagation continued…

• Finally update bottom layer of weights based on errors
calculated for hidden units.

output

hidden

input
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Update weights into j
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Example Backpropagation Neural Networks

x1

x2

.25
1

1

w1 = 0.3

w4 = 0.2

h1

h2 t2

t1
w5 = 0.2

w8 = 0.4

.31

1

1

input hidden output

0.2

0.3

0.2

0.8

Inputs
Expected 
outputs

ηLearning rate: = 0.4

Forward Pass:

For h1:

Output = 1/1+e-.49 = 0.6201

For h2:

Sum = .25x1 + .3x.2 + .3x.6 = 0.49 

Sum = .25x1 + .2x.4 + .3x.2 = 0.39 

Output = 1/1+e-.39 = 0.5963

For t1:

Output = 1/1+e-.6129 = 0.6486

For t2:

Sum = .31x1 + .6201x.2 + .5963x.3 = .6129 

Sum = .31x1 + .6201x.1 + .5963x.4 = .6105 

Output = 1/1+e-.6105 = 0.6480

Total error:

E1=½(0.2 - .6486)2 =.1006

E2=½(0.8 - .6480)2=.0116

Etotal =½∑(target-output)2

Etotal = .1006+.0116= 0.1122 



Example Chain Rule

t1h1

sumt1

outputt1w5outputh1

sumh1

w1

Chain Rule:

E is affected by  outputt1  sumt1  outputh1  sumh1  w1



Backward Pass

∂ sumt1
= X

∂ sumt1

∂ w5

X

… Eq. (1)
Etotal = ½ ∑ (actual – observed)2

= ½ (actualt1 – outputt1 )2 + (actualt2–outputt2)2

= 2 x ½ (actualt1 – outputt1 ) x -1 +  0

= (outputt1 – actualt1)

= 0.6486 – 0.2 = 0.4486 … Eq. (2)

∂ sumt1

= ?

σ(x) = 1/1+e-x

d/dx(σ(x)) = σ(x) (1- σ(x))

∂sumt1

= outputt1(1-outputt1)

=.6486(1-.6486)=.2279 … Eq. (3)

∂ sumt1

∂ w5
=

∂ (outputh1xw5+outputh2xw7)

∂ w5

= outputh1 = 0.6201 … Eq. (4)



Continued…

Eq. (1): = Eq.(1) x Eq.(2) x Eq.(3) = .4486 x .2279 x .6201 = .0634

w5 = w5 - η = .2 - .4 x .0634 = .1746

6

=
∂ sumt2

X
∂ sumt2

∂ w6

X
2

2
= (.6480-.8)x(.6480x(1-.6480))x.6201

=-.152x.2281x.6201 = -.0215 w6 = w6 - η
6

=.1-(.4x-.0215)= .1086

7
∂ sumt1

X
∂ sumt1

∂ w7

X= = Eq.(2)  x   Eq.(3)   x   outputh2

= 0.4486  x  0.2279  x  0.5963  = 0.0609

w7 = w7 - η

7

= .3 - .4 x .0609 = 0.3 – 0.02436 = 0.2756  



Continued…

8

=
∂ sumt2

X
∂ sumt2

∂ w8

X
2

2
= (-.152)x .2281xoutputh2

.5963

= -0.0207

w8 = w8 - η

8

= 0.4 + 0.4 x 0.0207 = 0.4 + 0.0083 = .4083

Now Compute Weights in the Hidden Layer (w1, w2, w3, and w4): Chain
becomes longer or shorter?

For w1:
1

E1∂

∂ w1
= +

E2∂

∂ w1

Where, 
E1∂

∂ w1
=

E1∂

∂ outputt1

x
outputt1∂ 

∂ sumt1

x
sumt1∂

∂outputh1

x
outputh1∂

∂ sumh1
x

sumh1∂

∂ w1

= .4486 x .2279 x w5 x (outputh1 x (1- outputh1)) x 0.2 = 0.00096
E1∂

∂ w1

Now, 
E2∂

∂ w1
=

E2∂

∂ outputt2

x
outputt2∂ 

∂ sumt2

x
sumt2∂

∂ outputh1

x
outputh1∂

∂ sumh1

x
sumh1∂

∂ w1

= -.1520 x .2281 x w6 x .2356 x .2 =  -.00016 ∂Etotal/∂w1
=.00096 - .00016=.0008 

w1 = w1 + η ∂ ∂Etotal / w1

= 0.3 – 0.4 x 0.0008 = .2997

Similarly,
w2=.4007
… for you



Regularization in Neural Networks 

• Why Regularization is needed in Neural Networks?
• To improve the generalization/ learning outcome. To control impact

of noise and fluctuations on the dataset. Alternatively, to avoid
over-fitting.

• Which one is a free parameter in a Neural network?
• Input/ Output or Number of units in the hidden layer (M)

(Fitting a Sinusoidal dataset with different number of hidden units and
Sum-of-Squares error function optimized by Gradient descent)

Under-fit Over-fit

Img. Source: Bishop Text



Regularization: Weight Decay (L1/L2)

Overfitting

Regularized 

• Control model complexity by the addition of a regularization term to the
error function.

In L1 regularization (Lasso), the additional term added to the loss function is
the sum of the absolute values of the weights. This encourages sparsity in
the weights, effectively shrinking some of them to zero.

Loss function: 

Data term Regularization term

With Sum-of-squares error and a quadratic
regularizer:

L2 regularization (Ridge)

Where, λ as the regularization parameter, θ as the vector of weights of the Network. 

Contour plots 
(behaviour of 
fun)

Un-regularized error

What about error in both?



• Early stopping monitors the performance of the model on a validation set
and stops training when the performance starts to degrade, thus
preventing the model from overfitting to the training data.

Regularization: Early Stopping

(Training set error) (Validation set error)

• Example sinusoidal dataset

min

stop

Error

Epochs

Img. Source: Bishop text



Stochastic Regularization: Dropout
• Drop out each individual unit with some probability ρ (usually ρ = 1/2) by

setting its activation to ‘0’.

• The key idea behind dropout is to prevent overfitting by adding noise to
the network during training.

(Img. Source: Nitish Srivastava, et al., Journal of Machine
Learning Research, 15, 2014)

(Standard Neural Network) (After applying dropout)

During inference (testing or prediction), dropout is typically turned off, and the full network
is used. However, the weights are usually scaled by ‘1-ρ’ during inference to account for the
fact that more units were active during training.



Regularization: Data Augmentation
• Data augmentation acts as a form of regularization by introducing additional

variations and diversity into the training dataset.
• A technique used to artificially increase the size of a training dataset by applying

various transformations to the existing data samples.

• Random rotation, Random scaling, Random cropping, Horizontal or vertical flipping,
Adding noise (e.g., Gaussian noise), Changing brightness, contrast, or saturation

(Automatic Speech Recognition)

original noise

(Healthcare)(Self driving cars)
Img. Source: https://www.datacamp.com/
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resize_and_rescale=keras.Sequential([ layers.Resizing(IMG_SIZE, IMG_SIZE), layers.Rescaling(1./255)])
flipped grayscale cropped rotated



PyTorch Ex: BPNs for Predicting Age of Abalones 
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Thank You!


