
21.08.2024

BITS F464: Machine Learning (1st Sem 2024-25)

SUPERVISED LEARNING-I (CONCEPT LEARNING)

Chittaranjan Hota, Sr. Professor Dept. of Computer Sc. and Information Systems hota@hyderabad.bits-pilani.ac.in

Concept Learning: A General Model

Concept: Stop

Rule: If the traffic light is red, then stop.

Concept: Bird

Rule: If an animal has feathers, can fly, and lays eggs, then it is a bird.

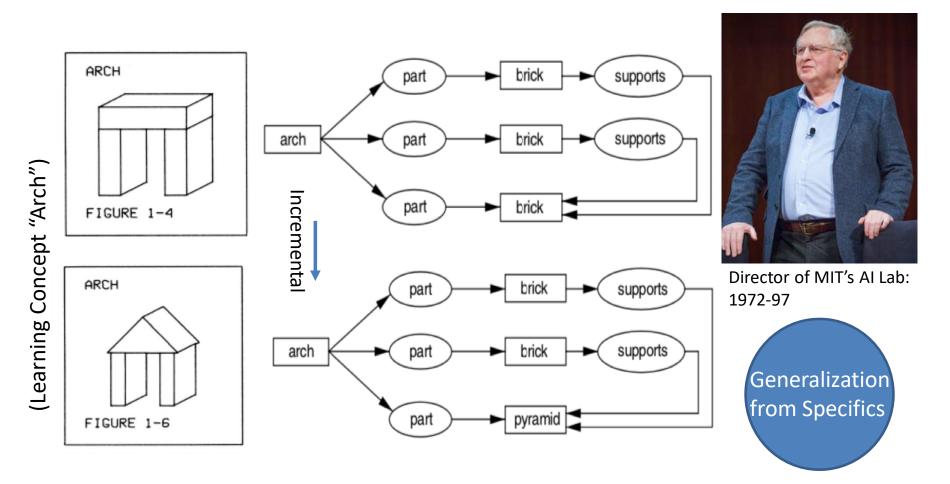
Concept: Flu

(BITS, Hyd Tennis court)

Concept: Play tennis

Rule: If the weather is sunny, the humidity is normal, and the wind is not strong, then play tennis.

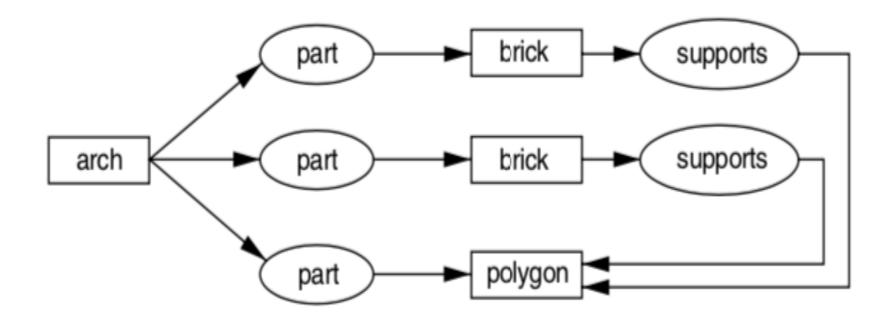
Rule: If a person has a fever, cough, and body aches, then they have the flu.


Question: What will you learn given 100 spam emails and 200 legitimate emails?

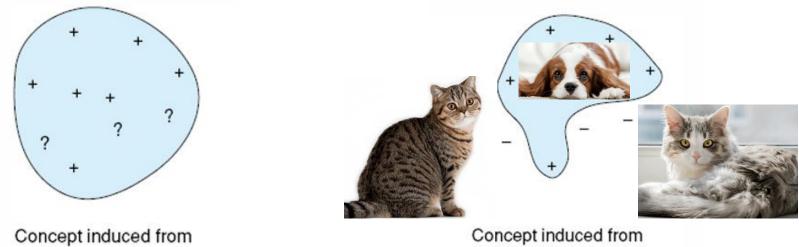
How Concept Learning Infers a function?

Credit Risk	Applic ant Name	Income (Annual)	Credit Score	Debt- to- Incom e Ratio (%)	Empl oyme nt Durat ion (Year s)	Payme nt History	Savings Balance	Loan Inquiri es (Last 6 mont hs)	Bankru ptcy (Last 5 years)	Credit Risk
lender	Raj	50,000	720	30%	5	No late payme nts	15,000	1	No	Low Risk
	Sham	30,000	650	40%	3	1 late payme nt	5,000	2	No	Mediu m Risk
borrower	Nitin	75,000	780	20%	10	No late payme nts	25,000	0	No	Low Risk
(Credit Risk Assessment)	Bikash	40,000	600	50%	2	Multipl e late payme nts	2,000	3	No	High Risk

Question: What function will you learn here?


Winston's Program: Inductive Learning

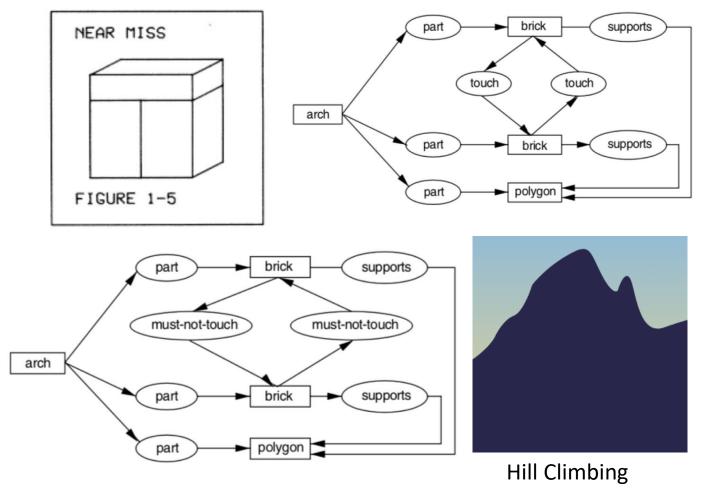
Patrick Winston: Learning Structural Descriptions from Examples, PhD Thesis (1970, MIT)


Generalization using background knowledge

• What background knowledge learner can use here to generalize?

The Role of Negative Examples

- Negative instances prevent overgeneralization by forcing the learner to specialize concepts in order to exclude negative instances.
- All small, furry, four-legged animals are dogs (by seeing a few)
- Any email containing 'Congratulations' is spam.



positive examples only

positive and negative examples

Question: What could be the function or rule now?

Description of a "near miss" & Specialization

How important is the order of examples?

A bird with wings, feathers, and the ability to fly. (+ve)

A penguin (a bird that cannot fly). Near miss.

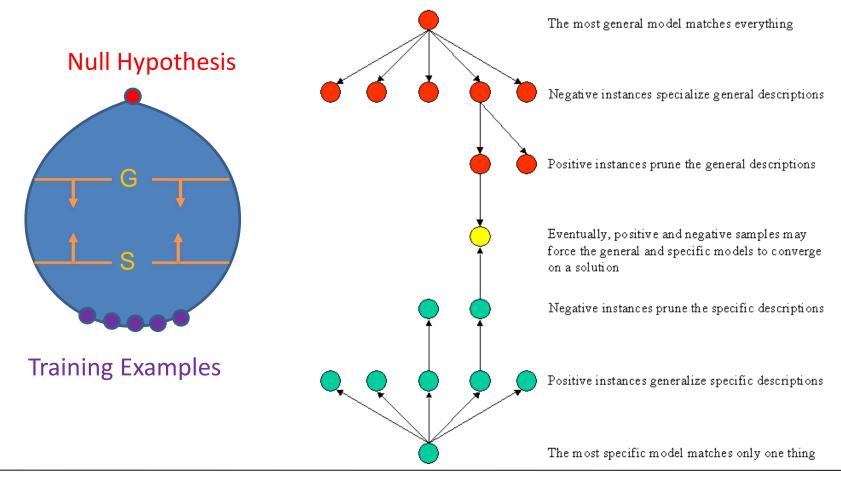
A bat (which flies but is not a bird). Counter ex.

More at: https://dspace.mit.edu/bitstream/handle/1721.1/6884/AITR-231.pdf?sequence=2

Recap: Winston's Program

Each example introduces a new feature while maintaining the core structure, allowing the program to generalize effectively.

Recap: Overgeneralization



In this order, the system might mistakenly focus on the material (wood) or the presence of legs, leading to overgeneralization. \rightarrow wooden table or ladder may be called as chair.

Order: A Wooden Chair, A Plastic Chair, A Wooden Table, A Bean Bag, A Stool.

Version Space as a Search

• Inductive learning as a Search through the Concept Space

Candidate Elimination (Mitchell, PhD, Stanford)

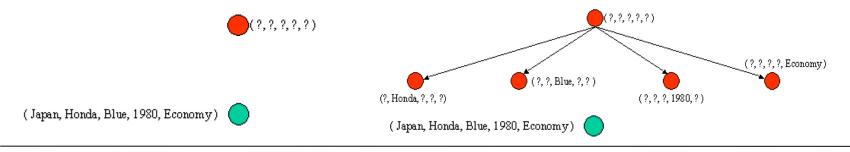
- Initialize G to contain one element: the most general description (all features are variables).
- Initialize S to empty.
- Accept a new training example.
- Process Positive Examples:

(Tom Mitchell, CMU)

- Remove from G any hypothesis that do not cover the example.
- Generalize S as little as possible so that the new training example is covered.
- Remove from S all elements that cover negative examples.

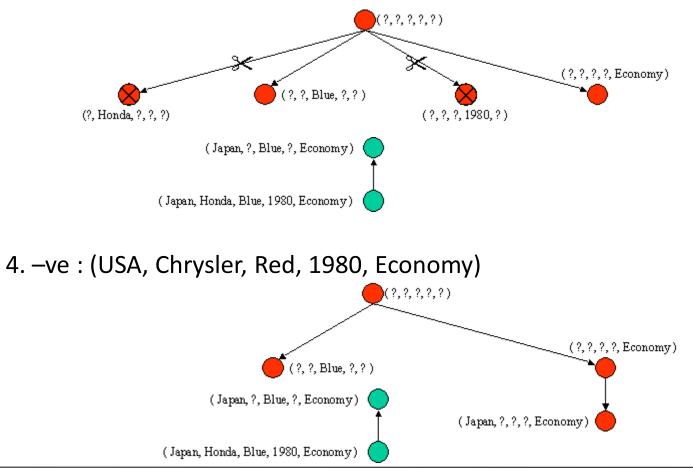
Algorithm continued...

- Process Negative Examples:
- Remove from S any descriptions that cover the negative example.
- Specialize G as little as possible so that the negative example is NOT covered.
- Remove from G all elements that do NOT cover the positive examples.
- Continue processing new training examples, until one of the following occurs:
- Either S or G become empty, there are no consistent hypotheses over the training space. Stop.
- S and G are both singleton sets.
 - if they are identical, output their value and stop.
 - if they are different, the training cases were inconsistent. Output this result and stop.
- No more training examples. G has several hypotheses.


Example

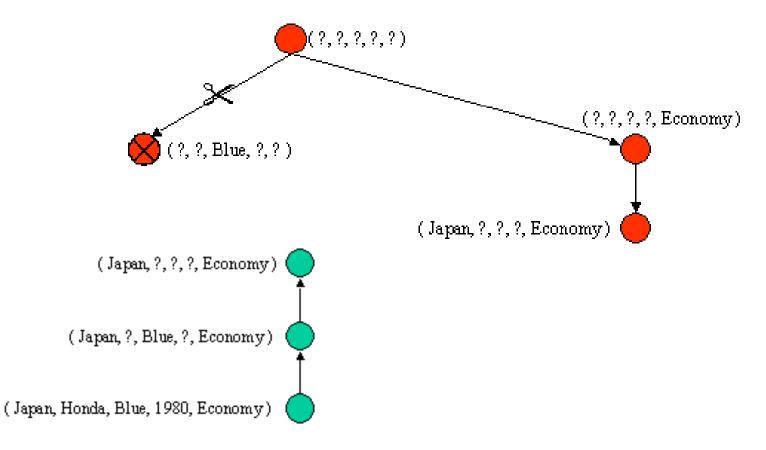
Learning the concept of "Japanese Economy Car"

Origin	Manufacturer	Color	Decade	Туре	Example Type
Japan	Honda	Blue	1980	Economy	Positive
Japan	Toyota	Green	1970	Sports	Negative
Japan	Toyota	Blue	1990	Economy	Positive
USA	Chrysler	Red	1980	Economy	Negative
Japan	Honda	White	1980	Economy	Positive


1. +ve:(Japan,Honda,Blue,1980,Economy)

2. -ve:(Japan,Toyota,Green,1970,Sports)

Example continued...


3. +ve : (Japan, Toyota, Blue, 1990, Economy)

Img. Source: https://www2.cs.uregina.ca/~dbd/cs831/notes/ml/vspace/vs_prob1.html

Example continued...

5. +ve : (Japan, Honda, White, 1980, Economy)

How important are training examples?

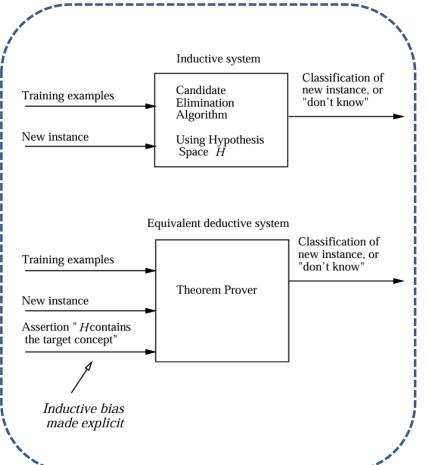
	Origin	Manufacturer	Color	Decade	Туре	Example Type
	Japan	Honda	Blue	1980	Economy	Positive
	Japan	Toyota	Green	1970	Sports	Negative
	Japan	Toyota	Blue	1990	Economy	Positive
	USA	Chrysler	Red	1980	Economy	Negative
Ī	Japan	Honda	White	1980	Economy	Positive
	Japan	Toyota	Green	1980	Economy	Positive
	Japan	Honda	Red	1990	Economy	Negative

Consistent with version space, and hence G: (Japan,?,?,?, Economy), and S: (Japan, ?, ?, ?, Economy) i.e. No change.

In-consistent with version space and hence, G: ϕ , and S: ϕ (no concept)

Biased Hypothesis Space

- Candidate elimination will converge towards the target concept, provided:
 - Accurate training examples are available to the learner
 - Initial hypothesis space contains the target concept
- If target concept is not present, then it is Biased.


Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
1 2 3	Sunny Cloudy Rainy	Warm Warm Warm	Normal Normal Normal	Strong Strong Strong	Cool Cool Cool	Change Change Change	Yes Yes No
φ S2 : (?, Warm, Normal, Strong, Cool, Change) S1 : (Sunny, Warm, Normal, Strong, Cool, Change)							oblem is that ve biased the r to consider onjunctive neses.

Inductive Bias in Concept Learning

- Idea: Choose H that expresses every teachable concept (i.e. H is a powerset of X).
- Consider H' as disjunction, conjunction, and negation over previous H.

Types of Inductive bias:

- Prior knowledge: dogs and cats are mammals.
- Assumptions about data distributions: classes are linearly separable of features are independent?
- Model structure: DT or ANNs

Question: What are the inductive biases when you try to apply for job?

Quiz for you...

- Which of the following is NOT a knowledge representation scheme for Symbolic ML?
 - Propositional and Predicate Logic
 - Semantic Networks
 - Bayesian Networks \checkmark
- Candidate elimination algorithm takes on training examples and searches what to find out a target concept?
 - Concept space
 - Version space \checkmark
 - Decision Tree
- Which one does not contribute to Overgeneralization in ML?
 - Sufficient training data \checkmark
 - Imbalanced training data
 - Biased training data
 - Overfitting

Inductive bias does not support: guiding generalization, avoiding overgeneralization, \sqrt{Not} constraining hypotheses, Improving learning efficiency.

Thank You!