
Chittaranjan Hota, Sr. Professor
Dept. of Computer Sc. and Information Systems

hota@hyderabad.bits-pilani.ac.in

BITS F464: Machine Learning (1st Sem 2024-25)
22.11.2024

Birla Institute of Technology and Science Pilani, Hyderabad Campus

INSTANCE AND KERNEL BASED LEARNING: -NN, SVMk

Instance-based learning: k-NN

• Why is it called Instance-based?

• Predictions are made based on specific instances or examples from the
training data.

• Instead of learning explicit relationships between features, it learns from
memorization of training data.

• Called Lazy learning. Why?

• Because it postpones generalization until prediction/ classification time.

• Where is it useful over Symbolic or Connectionist learning you have read?

• Where the underlying relationships between features and labels are complex
OR where the dataset is dynamic and constantly evolving.

• They are robust to Concept drift. Why?

• As they directly adapt to new examples, they are not affected by data
distribution over time or change in the characteristics of the target variable.

• Based on Similarity metrics (Euclidian, Manhattan, Cosine, etc…)

k-NN: k-Nearest Neighbor Algorithm

?

k = 3
class: red

k = 5

class: blue

k = 9

class: blue

from sklearn.neighbors import KNeighborsClassifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
iris = load_iris()
X = iris.data
y = iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.2, random_state=42)

knn = KNeighborsClassifier(n_neighbors=5)

knn.fit(X_train, y_train)

y_pred = knn.predict(X_test)

accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)

load dataset

k=5

Applications: Optical Character Recognition (OCR), Credit Scoring, Loan Approval.

Discrete valued target fun: voting, and
Real-valued target fun: taking mean

k-NN Distance Metrics: Common Choices

Euclidean: √(x
2
– x

1
)2 + (y

2
– y

1
)2

(X1, Y1)

(X2, Y2)

X

Y

Manhattan: | X2 – X1 | + | Y2 – Y1 |

(X1, Y1)

(X2, Y2)

X

Y

import numpy as np
point1 = np.array([1, 2])
point2 = np.array([4, 6])

distance = np.sum(np.abs
(point1 - point2))

print("Manhattan Dist:", distance)

m
a
n
u
a
l
l
y

distance: hyper-parameter

Decision boundaries: Voronoi-like dia.

• All possible points within a sample's
Voronoi cell are the nearest neighboring
points for that sample.

• For any sample, the nearest sample is
determined by the closest Voronoi cell
edge

• When you perform a KNN search for a
given point, you're effectively
partitioning the space around each data
point into regions based on distance. (1-Nearest Neighbor Algorithm)

Where, (a, b) = 1 if a==b, zero (0) otherwise.

Properties:

Distance-weighted k-NN: Refinement

• Weight the contribution of each of the k-neighbors according to their distance to
the query point, xq, giving greater weight to closer neighbors.

• To accommodate the case where the query point xq, exactly matches one of the
training instances ‘xi’ and the denominator d(xi, xq)2 will therefore be zero, and
hence we assign:

• If there are several such training examples, we assign the majority classification
among them.

= f(xi)

Where, ‘d’ is the distance between xi

and xq.

• Closer neighbors have a greater influence on the decision, while farther neighbors
have less influence. Sensitive to outliers.

How to choose a right value of ‘k’?

If ‘k’ = small value:

- Can lead to sensitive decision boundaries
when data-distribution is Non-linear

- Can be sensitive to noise and outliers,
hence leading to Overfitting

- Hence, Low bias and High variance.

If ‘k’ = large value:

- Can lead to smoother decision boundary
as influence of individual neighbor is
diluted.

- Reduce the impact of noise and outliers.

- Can lead to Under-fitting in complex cases.

- Hence, High bias and Low variance.

Rule of thumb:
K = sqrt(N)
N: number of training points

Else, use Cross-validation to
decide the value of ‘k’.

k=7 k=13

Curse of Dimensionality: Distance computation complexity, Sparse data, Curse of Proximity

Kernel-based Learning: Support Vector Machine

• Transform the input data into a higher-dimensional feature space
using a kernel function.

• In this higher-dimensional space, the data may become more linearly
separable, allowing linear algorithms to do the classification well.

• SVM finds an optimal hyperplane that separates the classes in this
transformed feature space.

• The optimal hyperplane is the one that Maximizes the Margin
between the two classes of data points.

• Model complexity depends on the number of training samples, not on
the dimensionality of the kernel space.

• As it can handle high dimensional vector spaces with ease, it makes
feature selection less critical.

SVM: Intuition behind choice of surface

X

X

O

O
O

O

O

X

X

X

X

X

O

O

Which one is the best separator out of these 4?

+

+

+ +

+

+

+

Some Noise in the Input Samples

X

X

O

O
O

O

O

X

X

X

X

X

O

O

A B C D

Which ones are better now? Which one is good ow?

+

+

+

+ +

+

+

Finding the Decision Boundary: Another Ex.

• Let {x1, ..., xn} be the data set and let yi ∈ {1,-1} be the class label of xi

Class 1

Class 2

m

y=1
y=1

y=1

y=1
y=1

y=-1

y=-1

y=-1

y=-1

y=-1

y=-1

Support vectors are the data points that lie closest to the decision boundary (hyperplane)
and have the largest influence on determining the position and orientation of the boundary.

Support Vectors are the data
points:
- That lie on or within the margin

boundary.
- Are misclassified or are close to

being misclassified.

Hence, the decision
boundary should be

as far away as
possible from the
data of both the

classes
Maximum Margin

Classifier (m)
w1

2 + w2
2 + …+wn

2

Euclidean (L2
Norm)

Maximum Margin Classifier (m)

For the marginal plane, we can write the
equation as:

For the positive hyperplane the equation will
be:

And for negative hyperplane:

Marginal Distance?

As wT is a vector which has a direction,
divide the equation (1) by ||w||:

(Eq.1)

Hence, the goal of SVM is:

Regularizer

Convex Optimization Problem

• The decision boundary becomes: wx + b = 0 x1 + x2 – 4 = 0

• Support Vectors: (2,3) and (2,1).

2w1+3w2+b >= 1

3w1+3w2+b >= 1

w1+w2 + b <= -1

2w1+w2+b <= -1
Assume normalized direction vector w
= (1,1). Combine the results for b.

2(1)+3(1)+b >= 1 b >= -4

3(1)+3(1)+b >= 1 b >= -5

1(1)+1(1)+b <= -1 b <= -3

2(1)+1(1)+b <= -1 b <= -4

Soft margin SVM

• For non-linearly separable data, slack variables are introduced to allow some
misclassification:

• Including the number of errors in the
training and the sum of the value of error,
the optimization term will be:

where ‘C’ is a regularization parameter
controlling the trade-off between margin
width and classification error.

Problems with linear SVM: How to Solve?

=-1
=+1

What if the decision function is not a linear?

XOO O O XXX x1

x2

X

O
O

O
O

X

X

X

x1

x1
2

Kernel Trick

)2,,(space in the

separablelinearly are points Data

21

2

2

2

1 xxxx

A mathematical technique that allows SVMs to classify data that is not linearly separable in the
original input space by implicitly mapping it to a higher-dimensional feature space, without
explicitly performing the transformation.

What is a Radial Basis Function?
• The radial basis function is a mathematical function that takes a real-valued

input and gives a real-valued output based on the distance between the
input value projected in space from an imaginary fixed point placed
elsewhere.

(Imaginary point)

r

The distance between the center and any
data point positioned in the boundary of
the circle is called the radius.

After calculating the radius, we need to pass this value inside a mathematical
function (RBF) that will return a real value. The returned value will be the
transformed magnitude of a particular data point.

Radial Basis Kernel: Similar to Gaussian
• The RBF kernel function for two points X₁ and X₂ computes the similarity or how

close they are to each other. This kernel can be mathematically represented as
follows:

1. ‘σ’ is the variance and our hyper-parameter
2. ||X₁ - X₂|| is the Euclidean (L₂-norm)
Distance between two points X₁ and X₂

σ = 1

σ = 10

Image source: https://towardsdatascience.com/

SVM with RBF Kernel Example

Let there be points:
Class A: (1,1), (2,2)
Class B: (1,2), (2,3)

And RBF kernel is:

Compute kernel matrix K that captures pairwise similarities between all points:

Step 1: Calculate squared Euclidean distances between all points:

The kernel matrix implicitly represents the data in a higher-dimensional
space, where we can now use a linear classifier like an SVM.

SVM Classification with Sklearn

Thank You!

