

06.09.2024

BITS F464: Machine Learning (1st Sem 2024-25)

MODEL EVALUATION

Chittaranjan Hota, Sr. Professor Dept. of Computer Sc. and Information Systems hota@hyderabad.bits-pilani.ac.in

How do you Evaluate a ML Model?

What is Bias in Learning?

• Bias (error) is the amount that a model's prediction differs from the target value. Unable to capture the complexities.

Continued...

Squiggly line wins in Training set...

Accuracy on the Test set!

• Variance: It's the variability of the model's predictions for different instances of training data. Learns noise from the training data.

Straight line wins in Testing set...

Overfitting due to High Variance

- Low Bias and High Variability: It might do well sometimes, and other times it might perform very poorly. This is Overfitting.
- High Bias and Low Variability: It might do good all the times (consistently) but not great predictions.

What is desirable in Learning?

(Low bias and variance)

(Over-fitting) (High variance)

- Model is too simple 1.
- 2. Inadequate features
- Size of Training set is not enough Reasons I 3.
- Features are not scaled 4

Increase no. of epochs, model complexity, and features. remove noise etc.

Linear Regression: Bias, Variance

Solution

- High variance and low bias 1.
- Model is too complex 2.
- 3. Size of Training set is small
- By using Regularization, K-fold Cross validation, Ensemble.

Decision Trees: Bias, Variance

Bias-Variance Trade-offs

Which one is good and which is bad? Model complexity Vs Error

Avoiding Overfitting: Size of dataset +

(How big the size should be? Heuristics: The number of data points should be no less than 5 or 10 times the number of adaptive parameters in the model) For, ex: Decision Trees? Max depth, Max features, etc...

Avoiding Overfitting: Regularization

	$\ln\lambda=-\infty$	$\ln\lambda=-18$	$\ln\lambda=0$	
w_0^{\star}	0.35	0.35	0.13	
w_1^{\star}	232.37	4.74	-0.05	$(\ldots \ldots) $ $(2 $ $(2 $
w_2^{\star}	-5321.83	-0.77	-0.06	$(x_n, \mathbf{W}) - t_n + - \mathbf{W} ^{-1}$
w_3^{\star}	48568.31	-31.97	-0.05	
w_4^{\star}	-231639.30	-3.89	-0.03	
w_5^{\star}	640042.26	55.28	-0.02	
w_6^{\star}	-1061800.52	41.32	-0.01	
w_7^{\star}	1042400.18	-45.95	-0.00	
w_8^{\star}	-557682.99	-91.53	0.00	
w_{q}^{\star}	125201.43	72.68	0.01	
t		$M = 9$ $\ln \lambda = -18$		Is it better? λ : Controls the degree of Overfitting $M = 9$ $\ln \lambda = 0$ $M = 9$ $M = 9$ $M = 9$ $M = 9$
-	1 0			Too large a value of lambda: poor x 1 0 -35 -30 $\ln \lambda$ -25 -20

Limitations of single train/test split

- How do you learn a particular algorithm, say decision tree in this course!
 - Model, Training set, Testing set, Validation set, Cross-validation, Accuracy, Type of learning?
- Earlier model of our evaluation (Test1, Test2, Compre, ...) Vs the current model. A larger test set tells of what about the performance (learning outcome)? Will some of you not perform consistently? (variance?)
- Larger training datasets may improve accuracy by reducing the complexity of the model, hence lessening the risks of Overfitting.
- A single training set does not tell us how sensitive accuracy is to a particular training sample. The reasons: Noise, Outliers, and Irrelevant information.

Solution to Overfitting: k-fold Cross Validation

- Unfortunately, datasets are never large enough to do this. So we should do our best with small datasets. This is done by repeated use of the same data split differently; this is called *cross-validation*.
- The catch is that this makes the error percentages dependent as these different sets share data.

k-fold Cross Validation: An Example

• Cross-validation helps to reduce variance by providing a more accurate estimate of the model's performance on new data.

Tota	l instan	ces	: 2	5																			
Value	e of k		: 5																				
No. 3	Iteratio	n					Tra	aini	ing	set	t oł	osei	rvat	tion	ıs						Testing	g set	obser
1	[5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24]	[0 1 2 3	3 4]	
2	[0	1	2	3	4	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24]	[5678	3 9]	
3	[0	1	2	3	4	5	6	7	8	9	15	16	17	18	19	20	21	22	23	24]	[10 11 1	2 13	14]
4	[0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	20	21	22	23	24]	[15 16 1	7 18	19]
5	[0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19]	[20 21 2	22 23	24]

Advantages: Limits Overfitting, Model selection, Hyper-parameter tuning (λ)

Disadvantages: Computationally expensive, not suitable for time-series data as it assumes data points to be independent and identically distributed (IID), Bias-variance trade-off (High value of k: Low Bias & High variance, Lower values of k: High Bias and Low variance).

Stratified k-fold Cross Validation

• When just random shuffling and splitting is not sufficient.

Souce: https://www.kaggle.com/

Average of all split scores

Out-Of-Bag (OOB) Evaluation Metric

Sampling with Replacement

[INFO 24-01-31 12:30:46.6883 UTC kernel.cc:887] Train model [INFO 24-01-31 12:30:46.6885 UTC random_forest.cc:416] Training random forest on 399 example(s) and 5 feature(s). [INFO 24-01-31 12:30:46.6904 UTC random_forest.cc:802] Training of tree 1/100 (tree index:0) done accuracy:0.73125 logloss:9.68673 [INFO 24-01-31 12:30:46.7014 UTC random_forest.cc:802] Training of tree 11/100 (tree index:11) done accuracy:0.793451 logloss:2.45525 [INFO 24-01-31 12:30:46.7094 UTC random_forest.cc:802] Training of tree 21/100 (tree index:20) done accuracy:0.817043 logloss:1.0483

(Source: Wiki)

Out-Of-Bag Error: An Example

Over many iterations, the Cross validation & OOB should produce a very similar error estimate.

Classification accuracy for Imbalanced datasets

Img. Source: https://flickr.com/photos/esqui-ando-con-tonho/41295716874/

Model Evaluation Metrics: Confusion Matrix

- A table used in classification problems to assess where errors in the model were made.
- An Example: (12 Individuals diagnosed with/ without diabetes)

Individual Number	1	2	3	3	4	5	6	7	8	9	10	11	12
Actual Classification	1	1	1	1	1	1	1	1	1	0	0	0	0
Individual Number		1	2	3	4	5	6	7	8	9	10	11	12
Individual Number Actual Classification		1	2 1	3 1	4 1	5 1	6 1	7 1	8 1	9 0	10 0	11 0	12 0

Can you find out how many True Positives are there here?

Individual Number	1	2	3	4	5	6	7	8	9	10	11	12
Actual Classification	1	1	1	1	1	1	1	1	0	0	0	0
Predicted Classification	0	0	1	1	1	1	1	1	1	0	0	0
Result	FN	FN	TP	TP	TP	TP	TP	TP	FP	ΤN	ΤN	<u>.TN</u>

(Source: Wiki)

Continued...

Receiver Operating Characteristic Curve

• Graphically represent the performance of a binary classifier.

Thank You!