

29.11.2024

BITS F464: Machine Learning (1st Sem 2024-25)

Introduction to Reinforcement Learning(RL)

Chittaranjan Hota, Sr. Professor Dept. of Computer Sc. and Information Systems hota@hyderabad.bits-pilani.ac.in

What is Reinforcement Learning?

 Agent tries to maximize the cumulative reward from the environment by performing a set of actions.

Image source: https://highlandcanine.com/

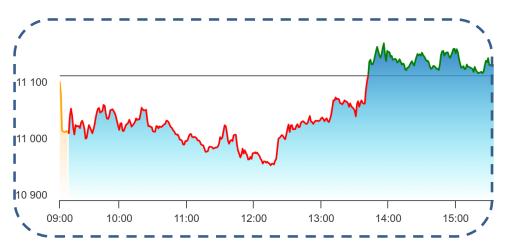
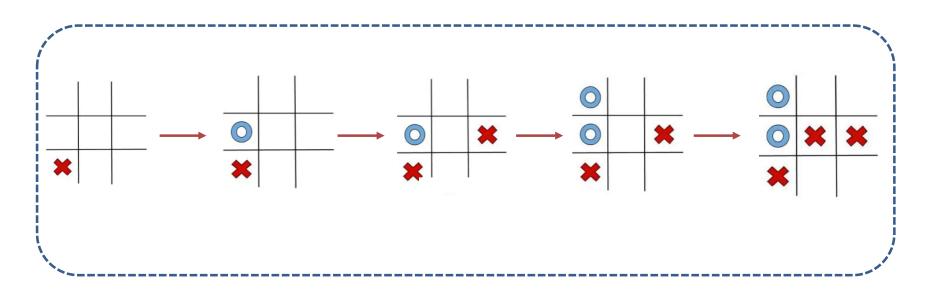


Image source: UltraTech Cement Stock, 27th Nov 2024 from www.nseindia.com

Applications: Gaming, Robotics, Autonomous vehicles, Personalized treatment etc.

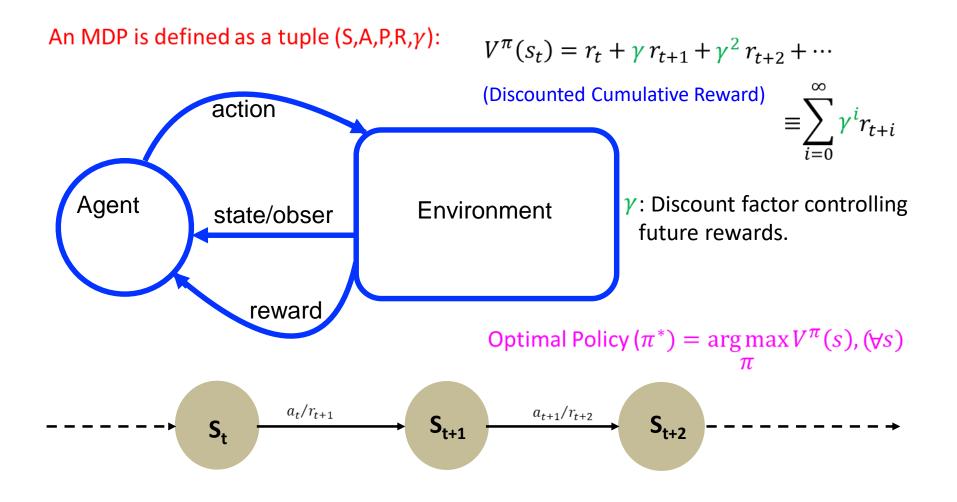
Formal Modelling: Markov Decision Process

Markov: The future state can be determined only from the present state that encapsulates all the necessary information from the past.



What should the player 'O' do here to avoid a loss?

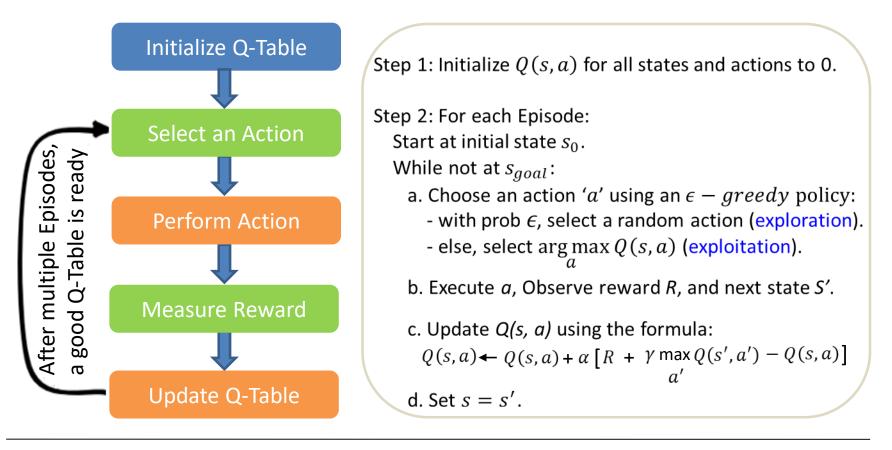
MDP Continued...



Learning Goal: Learn a Policy, $\pi(s_t) = a_t$

Q-Learning Algorithm

• Q-learning is a model-free reinforcement learning (RL) algorithm used to learn the optimal policy for a Markov Decision Process (MDP)



An Example of Q-Learning

- Initializing the environment: States: {s₀, s₁, s₂}, Actions: {a₀, a₁}, Rewards: R(s₀, a₀) = -1, R(s₀, a₁) = +2, R(s₁, a₀) = +3, R(s₁, a₁) = +1, R(s₂, any action) = 0 (terminal state).
- Transitions: $T(s_0, a_0) \rightarrow s_1$, $T(s_0, a_1) \rightarrow s_2$ (goal), $T(s_1, a_0) \rightarrow s_2$, $T(s_1, a_1) \rightarrow s_0$
- Parameters: $\alpha = 0.5$, $\gamma = 0.9$, Initial Q-values (Q(s, a) = 0 for all s, a).
- Episode 1:
 - current state: s₀, action chosen: a₀ (randomly using exploration), reward: R(s₀, a₀) = -1, next state: s₁.
 - Update Q(s₀,a₀) using Bellman's equation:

$$Q(s,a) \leftarrow Q(s,a) + \alpha \left[R + \gamma \max Q(s',a') - Q(s,a) \right]$$

- $Q(s_0, a_0) \leftarrow 0 + 0.5 [-1 + 0.9 * max Q(s_1, a') 0]$
- $Q(s_0, a_0) \leftarrow 0.5 * [-1 + 0] = -0.5$ (Since, $Q(s_1, a') = 0$ initially (no knowledge of s_1).

	Updated Q-values after 3 Episodes		
Ex. Continued	State	Action(a ₀)	Action(a ₁)
	s ₀	-0.5	1.0
	S ₁	1.5	0.0
•Episode 2: From s₁	s ₂	0.0	0.0

•current state: s_1 , action chosen: a_0 , reward: $R(s_1, a_0) = +3$, next state: s_2 .

•Update Q(s₀,a₀) using Bellman's equation:

Q(s₁,a₀) ←Q(s₁,a₀) +
$$\alpha$$
[R+ $\gamma \max_{a'}$ Q(s₂, a') – Q(s₁, a₀)]
•Q (s₁, a₀) ← 0 + 0.5 [3 + 0.9 * 0 - 0] = 1.5

Episode 3: Back to s₀(different action)
current state: s₀, action chosen: a₁, reward: R(s₀, a₁) = +2, next state: s₂.

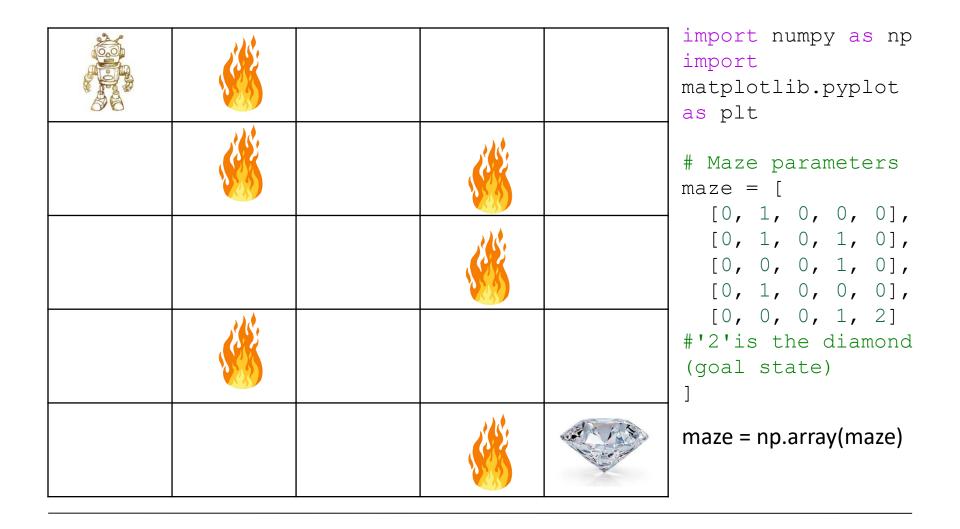
•Update Q(s₀,a₁) using Bellman's equation:

•Q(s₀,a₁)
$$\leftarrow$$
 Q(s₀,a₁) + α [R+ $\gamma \max_{a'}$ Q(s₂, a') - Q(s₀, a₁)]

•Q (s_0, a_1) $\leftarrow 0 + 0.5 [2 + 0.9 * 0 - 0] = 1.0$

• Alternatively, you may use an ANN to learn Q-values: Deep Q-Learning (DQN)

Optimal Solution using Q-Learning: Maze



Python Code

Q-Learning parameters

```
q_table = np.zeros((maze.size, len(actions)))
epsilon = 0.9 # Exploration rate
alpha = 0.1 # Learning rate
gamma = 0.9 # Discount factor
```

```
# Convert (row, col) to state index
def state_index(state):
    return state[0] * maze.shape[1] + state[1]
```

Check if a move is valid

```
def valid_move(state, action):
    rows, cols = maze.shape
    next_state = (state[0] + action[0], state[1] + action[1])
    if 0 <= next_state[0] < rows and 0 <= next_state[1] < cols:
        return maze[next_state] != 1 # Check for walls
    return False</pre>
```

Get reward for a state def get_reward(state): if maze[state] == 2: return 100 # Reaching the diamond return -1 # Default penalty for each step

```
# Choose an action using epsilon-greedy policy
def choose_action(state):
    if np.random.rand() < epsilon:
        return np.random.choice(len(actions)) # Explore
    return np.argmax(q_table[state_index(state)]) # Exploit</pre>
```

Train Q-Learning agent

```
def train_agent(episodes):
    for episode in range(episodes):
        state = (0, 0) # Start at top-left corner
        total_reward = 0
```

while True:

```
action_idx = choose_action(state)
action = action_dict[actions[action_idx]]
```

else:

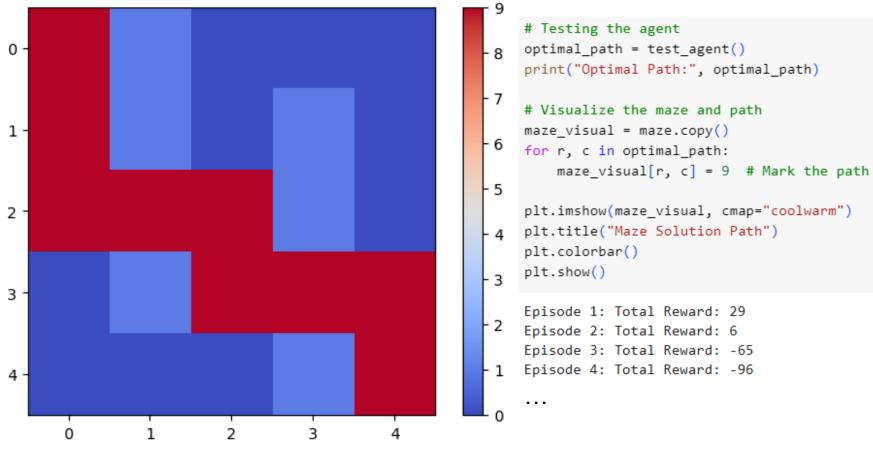
reward = get_reward(next_state)
total_reward += reward

Update Q-table

print(f"Episode {episode + 1}:Total Reward:{total_reward}")

Continued...

Maze Solution Path



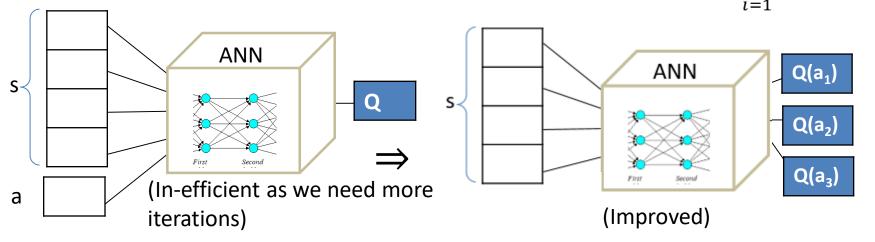
Optimal Path: [(0, 0), (1, 0), (2, 0), (2, 1), (2, 2), (3, 2), (3, 3), (3, 4), (4, 4)]

Deep Q-Learning (DQN) for RL

- When the number of states and actions become very large, how do you scale?
- Solution: Combine Q-Learning and Deep Learning → Deep Q-Networks (DQN)
- Goal: Approximate a function: $Q(s,a; \theta)$, where θ represents the trainable weights of the network
- $Q(s,a) = r(s,a) + \gamma \max Q(s',a)$ Bellman's equation
- Cost = $\{Q(s,a; \theta) [r(s,a)+\gamma \max Q(s',a; \theta)]\}^2$

$$=\frac{1}{n}\sum_{i=1}^{n} \left(y_i - \hat{Y}_i\right)^2$$

n



Good luck for Comprehensive Exams!